
- •Тимофеев а. Н. Физические основы эксплуатации ядерных реакторов Обнинск
- •Ядерная энергия
- •Единицы измерения в ядерной физике
- •Модель атома Бора
- •Типы взаимодействий и радиусы их действия
- •Способы получения трансурановых элементов
- •Радиоактивный распад и деление ядер
- •Электронный захват (к-захват)
- •Примерное распределение энергии при делении ядра u235
- •Ядерные реакции
- •Возможные источники ядерной энергии
- •Выбор делящегося вещества
- •Замедление нейтронов до тепловых скоростей
- •Конструкция активной зоны
- •Цепная ядерная реакция
- •Формула четырёх сомножителей
- •Управление цепной ядерной реакцией
- •Физические процессы в ядерном реакторе
- •Выгорание ядерного топлива
- •Воспроизводство ядерного топлива
- •Шлакование ядерного топлива
- •Стационарное отравление 54Xe135
- •54Xe135 (n, γ) 54Xe136 (шлак)
- •Йодная яма (нестационарное отравление 54Xe135)
- •Способы расчёта отравления реактора Xe135
- •Расчёт отравления реактора Xe135 по графикам
- •Расчёт отравления реактора Xe135 по формуле
- •Стационарное отравление реактора Sm149
- •Расчёт стационарного отравления реактора Sm149
- •Нестационарное отравление реактора Sm149 (прометиевый провал)
- •Расчёт нестационарного отравления Sm149
- •Температурный эффект реактивности
- •Физические и теплотехнические характеристики ядерного реактора
- •Энерговыделение в активной зоне
- •1 МВт ≈ 3*1016делений u235 в секунду.
- •Температурный режим активной зоны
- •Статические характеристики реактора
- •Управление ядерным реактором
- •Подкритический реактор
- •Критический реактор
- •Надкритический реактор
- •Физические характеристики органов управления
- •Пуск реактора
- •Расчёт критического положения Характеристика методики расчёта критического положения
- •Методика расчёта критического положения и предельной высоты подъёма пкр
- •1. Определение изменения запаса реактивности в зависимости от энерговыработки — .
- •2. Определение изменения запаса реактивности в зависимости от отравления Xe —
- •3. Определение изменения запаса реактивности в зависимости от стационарного отравления Sm —
- •4. Определение изменения запаса реактивности в зависимости от нестационарного отравления Sm —
- •5. Определение изменения запаса реактивности в зависимости от средней температуры теплоносителя —
- •6. Определение изменения запаса реактивности в зависимости от положения стержней ар —
- •7. Определение суммарного изменения запаса реактивности —
- •8. Определение предполагаемого критического положения —
- •9. Определение предельной высоты подъёма органов регулирования —
- •10. Документальное оформление, проверка и утверждение расчёта
- •Разогрев ядерного реактора
- •Работа на энергетическом уровне
- •Остановка ядерного реактора
- •Остаточное тепловыделение
- •Особенности ядерного реактора
- •Нфи и ттп ядерного реактора
- •Определение критической загрузки
- •Градуировка органов регулирования
- •Построение дифференциальной и интегральной характеристик кр
- •Определение тэр и отравления Xe
- •Уточнение характеристик в процессе кампании
- •Обеспечение ядерной безопасности и теплотехнической надёжности активной зоны (ябр и ттназ) Потенциальная опасность ядерной энергии
- •Чем обусловлена ядерная опасность ядерного реактора
- •Основные требования по ябр и ттназ
- •Обеспечение ябр и ттназ
- •Технические средства обеспечения ябр и ттназ
- •Организационные мероприятия по обеспечению ябр и ттназ
- •Основные требования и мероприятия по обеспечению ябр и ттназ на разных этапах эксплуатации яэу
- •Ответственность персонала за соблюдение ябр и ттназ
- •Водоподготовка
- •Источники коррозии
- •Ионно-обменные фильтры
- •Приложения
Управление цепной ядерной реакцией
Для практического осуществления стационарно текущей ЦЯР надо уметь этой реакцией управлять. Как мы увидим в дальнейшем, это управление существенно упрощается благодаря образованию запаздывающих нейтронов при делении 235U.
Есть несколько способов влиять на интенсивность ЦЯР, то есть управлять ею:
управление скоростью генерации нейтронов;
управление скоростью утечки нейтронов;
управление скоростью поглощения нейтронов.
Последний способ является самым простым, и реализуется он изменением соотношения между количеством делящегося вещества - U235, Pu239 (величина постоянная) – и количеством поглотителя нейтронов (величина меняющаяся).
Количество поглотителя в активной зоне меняется при внесении или извлечении из активной зоны поглощающих материалов.
Значение Кэфф при изменяющемся от поколения к поколению потоке нейтронов можно представить так:
или
,
,
где ρ — реактивность.
Реактивность может выражаться в долях единицы, в %%, в долях запаздывающих нейтронов βэфф и так далее.
Реактивность характеризует степень отклонения реактора от критического состояния.
Рассмотрим сначала развитие во времени
ЦЯР без запаздывающих нейтронов. Пусть
в системе с коэффициентом размножения
k среднее время жизни
одного поколения нейтронов равно Т.
Тогда за единицу времени число нейтронов
N изменится в
раз, то есть
,
откуда
,
где
N0 – начальное число нейтронов и
,
где
τ0 — время, за которое число нейтронов изменяется в е = 2.718 раз.
Величина Т лежит в пределах 10-4÷10-5 сек для медленных реакций. Отсюда видно, что даже в самом благоприятном для управления случае Т = 10-4 сек количество нейтронов возрастёт в 100 раз при k – 1 = 10-4 за 4.6 сек, а при k – 1 = 10-3 за 0.46 сек. Такой быстрый рост мощности ведёт к перегреву установки и выходу её из строя при малейшем отклонении коэффициента размножения от единицы.
Для быстрых реакций (Т в пределах 10-7 ÷ 10-8 сек) перегрев достигается ещё быстрее и поэтому более опасен.
Посмотрим, что даёт учёт запаздывающих нейтронов. Для простоты будем считать, что среднее время жизни Тз нейтронно-активного осколка по отношению к вылету запаздывающего нейтрона одинаково для всех осколков. Полный коэффициент размножения k можно представить в виде суммы
k = kмгн + kз
коэффициентов размножения для мгновенных и запаздывающих нейтронов. Если доля запаздывающих нейтронов равна β, то
kмгн = (1 – β) * k,
kз = β * k
то уравнение для изменения числа нейтронов заменится системой
,
,
где С – число осколков, способных к испусканию запаздывающих нейтронов.
Доля запаздывающих нейтронов в ядерном топливе составляет 0.64 %. Решая эту систему уравнений, получаем время увеличения числа нейтронов в е = 2.718 раз:
Поскольку Тз в среднем равно 12 – 13 сек, β = 0.64 %, то τ в сотни раз больше τ0, что резко снижает скорость нарастания интенсивности размножения нейтронов и решающим образом упрощает проблему управления ядерным реактором как на тепловых, так и на быстрых нейтронах.
Основное требование управляемости ядерного реактора — ρ < βэфф.
При выполнении этого условия возможно управление ядерным реактором вручную или с помощью аппаратуры.