
- •Тимофеев а. Н. Физические основы эксплуатации ядерных реакторов Обнинск
- •Ядерная энергия
- •Единицы измерения в ядерной физике
- •Модель атома Бора
- •Типы взаимодействий и радиусы их действия
- •Способы получения трансурановых элементов
- •Радиоактивный распад и деление ядер
- •Электронный захват (к-захват)
- •Примерное распределение энергии при делении ядра u235
- •Ядерные реакции
- •Возможные источники ядерной энергии
- •Выбор делящегося вещества
- •Замедление нейтронов до тепловых скоростей
- •Конструкция активной зоны
- •Цепная ядерная реакция
- •Формула четырёх сомножителей
- •Управление цепной ядерной реакцией
- •Физические процессы в ядерном реакторе
- •Выгорание ядерного топлива
- •Воспроизводство ядерного топлива
- •Шлакование ядерного топлива
- •Стационарное отравление 54Xe135
- •54Xe135 (n, γ) 54Xe136 (шлак)
- •Йодная яма (нестационарное отравление 54Xe135)
- •Способы расчёта отравления реактора Xe135
- •Расчёт отравления реактора Xe135 по графикам
- •Расчёт отравления реактора Xe135 по формуле
- •Стационарное отравление реактора Sm149
- •Расчёт стационарного отравления реактора Sm149
- •Нестационарное отравление реактора Sm149 (прометиевый провал)
- •Расчёт нестационарного отравления Sm149
- •Температурный эффект реактивности
- •Физические и теплотехнические характеристики ядерного реактора
- •Энерговыделение в активной зоне
- •1 МВт ≈ 3*1016делений u235 в секунду.
- •Температурный режим активной зоны
- •Статические характеристики реактора
- •Управление ядерным реактором
- •Подкритический реактор
- •Критический реактор
- •Надкритический реактор
- •Физические характеристики органов управления
- •Пуск реактора
- •Расчёт критического положения Характеристика методики расчёта критического положения
- •Методика расчёта критического положения и предельной высоты подъёма пкр
- •1. Определение изменения запаса реактивности в зависимости от энерговыработки — .
- •2. Определение изменения запаса реактивности в зависимости от отравления Xe —
- •3. Определение изменения запаса реактивности в зависимости от стационарного отравления Sm —
- •4. Определение изменения запаса реактивности в зависимости от нестационарного отравления Sm —
- •5. Определение изменения запаса реактивности в зависимости от средней температуры теплоносителя —
- •6. Определение изменения запаса реактивности в зависимости от положения стержней ар —
- •7. Определение суммарного изменения запаса реактивности —
- •8. Определение предполагаемого критического положения —
- •9. Определение предельной высоты подъёма органов регулирования —
- •10. Документальное оформление, проверка и утверждение расчёта
- •Разогрев ядерного реактора
- •Работа на энергетическом уровне
- •Остановка ядерного реактора
- •Остаточное тепловыделение
- •Особенности ядерного реактора
- •Нфи и ттп ядерного реактора
- •Определение критической загрузки
- •Градуировка органов регулирования
- •Построение дифференциальной и интегральной характеристик кр
- •Определение тэр и отравления Xe
- •Уточнение характеристик в процессе кампании
- •Обеспечение ядерной безопасности и теплотехнической надёжности активной зоны (ябр и ттназ) Потенциальная опасность ядерной энергии
- •Чем обусловлена ядерная опасность ядерного реактора
- •Основные требования по ябр и ттназ
- •Обеспечение ябр и ттназ
- •Технические средства обеспечения ябр и ттназ
- •Организационные мероприятия по обеспечению ябр и ттназ
- •Основные требования и мероприятия по обеспечению ябр и ттназ на разных этапах эксплуатации яэу
- •Ответственность персонала за соблюдение ябр и ттназ
- •Водоподготовка
- •Источники коррозии
- •Ионно-обменные фильтры
- •Приложения
Замедление нейтронов до тепловых скоростей
Итак, для создания условий для незатухающей ЦЯР необходимо достаточно быстро замедлить нейтроны деления (так называемые быстрые нейтроны) до необходимой энергии, чтобы за время замедления нейтрон не успел поглотиться в U238. В этом можно убедиться, сравнив графики сечений деления U235 нейтронами и радиационного захвата нейтронов U238 — преобладание деления над захватом имеет место при энергии нейтронов менее 0.01 эВ.
Для быстрого замедления применяется специальное вещество — замедлитель. Нейтроны хорошо замедляются на ядрах с наименьшей массой, поскольку при столкновении двух частиц большая часть энергии уносится более лёгкой из них.
Сам U не может выполнять роль замедлителя, поскольку его ядра очень тяжелы, замедление происходит за огромное число столкновений, при которых велика вероятность захвата нейтрона в U238.
Размеры активной зоны, ТВэл, ТВС, промежутки между ними подбирают так, чтобы быстрый нейтрон, обладающий энергией в области резонансного захвата в U238, находился при этом в замедлителе.
Практичным замедлителем является вода, которая одновременно играет и роль теплоносителя. Следующие свойства воды являются определяющими при выборе её в качестве замедлителя и теплоносителя:
очень хорошие замедляющие свойства (масса ядра водорода равна массе нейтрона);
самая высокая теплоёмкость среди жидкостей;
расширяемость при нагреве;
чрезвычайная доступность и лёгкость очистки;
хорошая растворимость присадок в воде.
Недостатком лёгкой воды считается поглощение ею нейтронов.
Совсем не поглощает нейтронов тяжёлая вода D2O, однако её замедляющие свойства чуть хуже и её добыча представляет известные трудности.
Сравнение замедляющих свойств H2O и D2O:
Замедлитель |
Время замедления |
Длина замедления |
Число столкновений до замедления |
H2O |
10-5 сек |
5.7 см |
19 |
D2O |
4.6*10-5 сек |
11.0 см |
35 |
Примеры других замедлителей: C, Be.
Конструкция активной зоны
Для уменьшения утечки нейтронов необходимо выбрать размеры и форму размножающейся среды, имеющей минимальную поверхность, с которой нейтроны вылетают наружу, по отношению к объёму, в котором они рождаются. Такая форма – шар.
С другой стороны, необходимо наличие определённого минимального количества делящегося вещества, чтобы незатухающая ЦЯР могла иметь место.
Минимальное количество делящегося вещества, в котором возможна ЦЯР, называют критической массой, а размер соответствующей формы — критическим размером.
Критическая масса может варьироваться в широких пределах от, казалось бы, малозаметных причин. Для среды из чистого U235 в форме шара критическая масса составляет примерно 47 кг при радиусе шара 9 см, а для среды из чистого U235 с частыми и тонкими полиэтиленовыми прокладками и с отражателем из Be критическая масса равна 242 гр.
Активная зона, состоящая из однородной смеси топлива и замедлителя, называется гомогенной.
Система чередующихся блоков топлива и замедлителя называется гетерогенной.
Гетерогенная зона характеризуется тем, что образовавшийся в ней быстрый нейтрон успевает перейти в замедлитель, не достигнув резонансных энергий и не поглотившись в топливе без деления. Далее, став тепловым в замедлителе, нейтрон должен для участия в ЦЯР продиффундировать до его границы и попасть обратно в топливо, не поглотившись в замедлителе и конструкционных материалах.
Конструкция гетерогенных зон — форма и размер активной зоны, размеры блоков топлива, шаг решётки топливных блоков выбирается из условия выполнения указанных требований.