Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Реферат Статистика.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
85.62 Кб
Скачать

Показатели вариации

К показателям вариации относятся: размах вариации, среднее линейное отклонение, дисперсия и среднее квадратичное отклонения.

Размах вариации — это разность между максимальным и минимальным значениями признака.

(1)

Пример

Опыт работы у пяти претендентов на предшествующей работе составляет: 2,3,4,7 и 9 лет. Решение: размах вариации = 9 — 2 = 7 лет.

Для обобщенной характеристики различий в значениях признака вычисляют средние показатели вариации, основанные на учете отклонений от средней арифметической. За отклонение от средней принимается разность  .

При этом во избежание превращения в нуль суммы отклонений вариантов признака от средней (нулевое свойство средней) приходится либо не учитывать знаки отклонения, то есть брать эту сумму по модулю  , либо возводить значения отклонений в квадрат  .

Среднее линейное отклонение

Мудрые математики и статистики придумали более надежный показатель, хотя и несколько другого назначения – среднее линейное отклонение. Этот показатель характеризует меру разброса значений совокупности данных вокруг их среднего значения. В чем суть? Для того, чтобы показать меру разброса данных нужно вначале определиться, относительно чего этот самый разброс будет считаться. Обычно это средняя величина. Дальше нужно посчитать, насколько значения анализируемой совокупности данных находятся далеко от средней. Понятное дело, что каждому значению соответствует некоторая величина отклонения, но нас же интересует общая оценка, охватывающая всю совокупность. Поэтому рассчитывают среднее отклонение по формуле обычной средней арифметической. Но! Но для того, чтобы рассчитать среднее из отклонений, их нужно вначале сложить. И если мы сложим положительные и отрицательные числа, то они взаимоуничтожатся и их сумма будет стремиться к нулю. Чтобы этого избежать, все отклонения берутся по модулю, то есть все отрицательные числа становятся положительными. Вот теперь среднее отклонение будет показывать обобщенную меру разброса значений. В итоге, средне линейное отклонение будет рассчитываться по формуле:

(2)

a – среднее линейное отклонение,

x – анализируемый показатель, с черточкой сверху – среднее значение показателя,

n – количество значений в анализируемой совокупности данных.

Рисунок.1.Среднее линейное отклонение

Красная линия - это среднее значение. Отклонения каждого наблюдения от среднего указаны маленькими стрелочками. Именно они берутся по модулю и суммируются. Потом все делится на количество значений.

Дисперсия - это средний квадрат отклонений значений X от среднего арифместического значения.

Дисперсия в статистике очень важный показатель, который активно используется в других видах статистического анализа (проверка гипотез, анализ причинно-следственных связей и др.)Как и среднее линейное отклонение, дисперсия также отражает меру разброса данных вокруг средней величины.

Формула для расчета дисперсии выглядит так:

 

(3)

где

D – дисперсия,

x – анализируемый показатель, с черточкой сверху – среднее значение показателя,

n – количество значений в анализируемой совокупности данных.

Язык знаков полезно перевести на язык слов. Получится, что дисперсия - это средний квадрат отклонений. То есть вначале рассчитывается среднее значение, затем берется разница между каждым исходным и средним значением, возводится в квадрат, складывается и затем делится на количество значений в данной совокупности. Разница между отдельным значением и средней отражает меру отклонения. В квадрат возводится для того, чтобы все отклонения стали исключительно положительными числами и чтобы избежать взаимоуничтожения положительных и отрицательных отклонений при их суммировании. Затем, имея квадраты отклонений, мы просто рассчитываем среднюю арифметическую.

Среднее квадратичное отклонение-это обобщающая характеристика размеров вариации признака в совокупности; оно показывает, насколько в среднем отклоняются конкретные варианты от их среднего значения.

Среднее квадратичное отклонение равно корню квадратному из дисперсии:

(4)

(5)

Где (4) для несгруппированных данных, а (5) для вариационного ряда.