
- •Экология. Повреждение и репарация днк. Ирина Михайловна Спивак Предисловие
- •Введение
- •1. Изучение днк-метаболизма
- •1.1. Начало исследования репарации
- •1.2. Репликация днк
- •1.2.1. Репарация за счет проверки днк-полимеразой
- •1.2.2. Участие корректирующих автономных экзонуклеаз в репликации и репарации днк
- •2. Типы повреждений днк
- •3. Многообразие систем репарации днк
- •4. Прямая репарация днк
- •4.1. Фотореактивация
- •4.2. Репарация о6-алкилированного гуанина
- •4.3. Репарация однонитевых разрывов днк
- •4.4. Репарация ар-сайтов за счет прямой вставки пуринов
- •5. Эксцизионная репарация
- •5.1. Эксцизионная репарация оснований (base excision repair, ber)
- •5.1.1. Многочисленные возможности репарации 8-оксигуанина
- •5.1.2. Роль pcna в эксцизионной репарации оснований
- •5.1.3. Ber, спаренная с репликацией
- •5.2. Эксцизионная репарация неспаренных оснований (mismatch repair, mmr)
- •5.2.1. Функциональные гены-гомологи у про– и эукариот
- •5.3. Эксцизионная репарация нуклеотидов (ner, nucleotide excision repair)
- •5.3.1. Эксцизионная репарация нуклеотидов у эукариот
- •5.3.2.Ner, спаренная с транскрипцией: tcr (transcription coupled repair)
- •5.3.3. Болезни, связанные с нарушением системы ner
- •5.3.3.1. Пигментная ксеродерма (хр)
- •5.3.3.2. Тиотриходистрофия (ttd). Транскрипционная гипотеза
- •5.3.3.3. Синдром Коккейна. (cs)
- •5.3.3.4. Cиндромы повышенной чувствительности к уф-облучению (uvs-s)
- •6. Репарация, связанная с рекомбинацией
- •7. Рекомбинация
- •7.1. Сайт-специфическая рекомбинация
- •7.2. Случайная рекомбинация
- •7.3. Гомологичная рекомбинация
- •7.3.1. Генная конверсия
- •8.1. Низкопроцессивные днк-полимеразы эукариот
- •9. Репарация двунитевых разрывов
- •9.1. Репарация двунитевых разрывов днк путем негомологического воссоединения концов (nhej)
- •9.2. Однонитевой отжиг (ssa, single strand annealing)) по прямым повторам
- •9.3. Репарация путем гомологической рекомбинации (hrr)
- •9.3.1. Роль гистона н2ах в репарации dsBs
- •9.3.2. Механизмы, обеспечивающие стабильность хромосом при наличии повторов и системы гомологической рекомбинации
- •9.3.3. Болезни, связанные с дефектами генов, вовлеченных в репарацию двунитевых разрывов
- •9.3.3.1. Атаксия-телеангиэктазия. Белок атм
- •9.3.3.2. Белки brca1 и brca2
- •9.3.3.3. Геликазы семейства RecQ
- •9.3.3.4. Синдром Блюма
- •9.3.3.5. Синдром Вернера
- •9.3.3.6. Анемия Фанкони
- •10. Защитники генома
- •10.1. Защитники генома. Белок р53
- •10.2. Защитники генома. Роль parp в репарации
- •10.3. Белки, комплементирующие чувствительность клеток грызунов к ионизирующей радиации
- •11. V(d)j рекомбинация
- •12. Перемещение мобильного элемента Sleeping Beauty
- •13. Пострепликативная репарация
- •13.1. Пострепликативная, или рекомбинационная, репарация
- •13.2. Убиквитин и убиквитин-связывающие белки
- •13.3. Rad6-зависимая пострепликативная репарация
- •14. Репарации поврежденных вилок репликации и ресинтез
- •14.1. Модель прохода повреждения с переключением матрицы
- •14.2. Остановка репликации и ресинтез. Привлечение белков репарации
- •15. Современные представления и знания о механизмах активации чекпойнтов и белках, вовлеченных в разные стадии этого процесса
- •15.1. Генеральные концепции и основные игроки
- •15.2. Молекулярные механизмы g1-чекпойнта
- •15.2. Молекулярные механизмы s-чекпойнта
- •15.3. Молекулярные механизмы g2-чекпойнта
- •15.4. Чекпойнты, вызванные повреждениями днк и репарация двунитевых разрывов
- •Заключение
- •Приложения Приложение 1
- •Xpa, xpb, xpc, xpd, xpe, xpf, xpg – пигментная ксеродерма
- •Приложение 2
- •Cписок литературы
15.3. Молекулярные механизмы g2-чекпойнта
Временная остановка клеточного цикла в ответ на облучение является одним из первых описанных эффектов радиации. G2-арест в этом контексте рассматривался, как пассивный пороцесс – следствие наличия поврежденной ДНК. Сейчас мы приходим к представлению, что G2-чекпойнт является наиболее активным ответом клетки, играющим серьезную роль в репарации ДНК. Ключевым эффектором этого процесса является необходимая для перехода клетки в митоз CDC2 (CDK1) киназа, активирующаяся при ее ассоциации с циклином B. Это отличие данного чекпойнта от G1 и S-чекпойнтов и утверждение его центральной роли в регуляции клеточного цикла.
Все это подробно показано на рис. 43. G2-арест требует изменения множества регуляторных процессов, вовлеченных в нормальный переход клетки из G2 в М: блокирование киназных функций самой CDC2, отсутствие или перемещение циклина В, а также изменение активности других белков, влияющих на регуляторный комплекс CDC2-циклин В. Основным событием, контролирующим вхождение в митоз, является снятие ингибирующего фосфорилирования с CDC2 по тирозину в 15 положении и триптофану в 14, для чего необходима активная фосфатаза. Таким образом, G2-арест ингибирует это дефосфорилирование, то есть ключевым его событием является регуляция активности фосфатазы CDC25C. Так, активация АТМ приводит к активации СНК2 через фосфорилирование триптофана в 68 положении. Активная CHK2 в свою очередь фосфорилирует CDC25C по серину в 215 положении, что приводит к блокированию ее функций. Фосфорилированная форма фосфатазы CDC25C связывается с белком 14-3-3σ, что поддерживает ее каталитическую неактивность и способствует переходу в цитоплазму и секвестрированию. Вторая ветвь G2-чекпойнта опосредуется через ATR/CHK1 активацию. При этом пути одновременно фосфорилируется-выключается белок CDC25А, а также фосфорилируется серин-549 белка Wee1, что облегчает его связывание тем же белком 14-3-3σ и приводит к усилению ингибиторной активности киназ по отношению к CDC2. Это придает второй ветви большую гибкость в контроле и консолидации G2-ареста.
Сами пореждения ДНК тоже могут регулировать активность CDC2 через циклин В. В некоторых клеточных линиях после облучения резко падает уровень мРНК циклина В, возможно из-за ее повышенной нестабильности, причем этот эффект определяет протяженность G2-ареста.
Также нужно иметь ввиду, что циклин В во время G1 и S фаз имеет цитоплазматическую локализацию и перемещается в ядро только к началу митоза. Также есть данные, что белок 14-3-3σ приводит к секвевтрированию циклина В в цитоплазме в ответ на повреждение ДНК.
Рисунок 43. Схема G2-чекпойнта, возникающего в ответ на повреждение ДНК.
Недавно были описаны еще два белка – регулятора CDC25C, принимающих участие в G2-чекпойнте, названные PLK1 и PLK3 (Polo-like kinase). Белки этого семейства принимают активное участие в митозе, включая вход и выход из него. У них всех есть крайне консервативный карбоксильный домен, имеющий два блока очень высокой гомологии, названные поло-боксами. PLK1 является позитивным регулятором CDC25C-активности в необлученных клетках и, специфически фосфорелируя ее, способствует вхождению в митоз. PLK3, напротив, активируется АТМ в ответ на повреждение ДНК, взаимодействует с CDC25C, фосфорелируя ее по серину-216, что приводит к ингибировангию ее активности Еще одной возможностью остановить вход в митоз при наличии повреждений в ДНК является взаимодействие белка PCNA c Р21, CDC25C и комплексом CDC2-циклин В, но не одновременное, а последовательное. Показано, что связывание Р21 и CDC25C с комплексом PCNA-CDC2-циклин В является совершенно особым и не позволяет CDC25C дефосфорелировать CDC2 для активации митоза. В дополнение к этому, Р21 может блокировать особую киназу САК (CDКs activating kinase), которая активирует CDC2 путем фосфорелирования триптофана в 161 положении. Участие Р21 в G2-ответе указывает на то, что в нем участвует и Р53. Роль Р53 в поддержании G2-ареста состоит в том, что он активирует транскрипцию трех вовлеченных в него белков: GADD45. P21 и 14-3-3σ и подавляет транскрипцию CDC2 и циклина В.
И, наконец, есть данные о вовлеченности в G2-арест BRCA1, опосредованно через ATM/ATR или напрямую, через активацию CHK1, но механизм этого остается неясным.
Таким образом, к настоящему времени стало ясно, что G2-реакция клетки на облучение зависит от фазы цикла, в которую это произошло. Одновременно становится понятным, что G2 чекпойнт-ответ разделяется на два молекулярно различных пути. Один начинается сразу же после облучения, захватывает клетки, облученные непосредственно в G2-фазе и является АТМ-зависимым, проходящим и независимым от дозы. Он приводит к резкому снижению митотического индекса. Второй, который развивается позже, в клетках, облученных на более ранних стадиях клеточного цикла, является АТМ-независимым, зато зависимым от дозы и приводит к накоплению клеток в фазе G2.