
- •Экология. Повреждение и репарация днк. Ирина Михайловна Спивак Предисловие
- •Введение
- •1. Изучение днк-метаболизма
- •1.1. Начало исследования репарации
- •1.2. Репликация днк
- •1.2.1. Репарация за счет проверки днк-полимеразой
- •1.2.2. Участие корректирующих автономных экзонуклеаз в репликации и репарации днк
- •2. Типы повреждений днк
- •3. Многообразие систем репарации днк
- •4. Прямая репарация днк
- •4.1. Фотореактивация
- •4.2. Репарация о6-алкилированного гуанина
- •4.3. Репарация однонитевых разрывов днк
- •4.4. Репарация ар-сайтов за счет прямой вставки пуринов
- •5. Эксцизионная репарация
- •5.1. Эксцизионная репарация оснований (base excision repair, ber)
- •5.1.1. Многочисленные возможности репарации 8-оксигуанина
- •5.1.2. Роль pcna в эксцизионной репарации оснований
- •5.1.3. Ber, спаренная с репликацией
- •5.2. Эксцизионная репарация неспаренных оснований (mismatch repair, mmr)
- •5.2.1. Функциональные гены-гомологи у про– и эукариот
- •5.3. Эксцизионная репарация нуклеотидов (ner, nucleotide excision repair)
- •5.3.1. Эксцизионная репарация нуклеотидов у эукариот
- •5.3.2.Ner, спаренная с транскрипцией: tcr (transcription coupled repair)
- •5.3.3. Болезни, связанные с нарушением системы ner
- •5.3.3.1. Пигментная ксеродерма (хр)
- •5.3.3.2. Тиотриходистрофия (ttd). Транскрипционная гипотеза
- •5.3.3.3. Синдром Коккейна. (cs)
- •5.3.3.4. Cиндромы повышенной чувствительности к уф-облучению (uvs-s)
- •6. Репарация, связанная с рекомбинацией
- •7. Рекомбинация
- •7.1. Сайт-специфическая рекомбинация
- •7.2. Случайная рекомбинация
- •7.3. Гомологичная рекомбинация
- •7.3.1. Генная конверсия
- •8.1. Низкопроцессивные днк-полимеразы эукариот
- •9. Репарация двунитевых разрывов
- •9.1. Репарация двунитевых разрывов днк путем негомологического воссоединения концов (nhej)
- •9.2. Однонитевой отжиг (ssa, single strand annealing)) по прямым повторам
- •9.3. Репарация путем гомологической рекомбинации (hrr)
- •9.3.1. Роль гистона н2ах в репарации dsBs
- •9.3.2. Механизмы, обеспечивающие стабильность хромосом при наличии повторов и системы гомологической рекомбинации
- •9.3.3. Болезни, связанные с дефектами генов, вовлеченных в репарацию двунитевых разрывов
- •9.3.3.1. Атаксия-телеангиэктазия. Белок атм
- •9.3.3.2. Белки brca1 и brca2
- •9.3.3.3. Геликазы семейства RecQ
- •9.3.3.4. Синдром Блюма
- •9.3.3.5. Синдром Вернера
- •9.3.3.6. Анемия Фанкони
- •10. Защитники генома
- •10.1. Защитники генома. Белок р53
- •10.2. Защитники генома. Роль parp в репарации
- •10.3. Белки, комплементирующие чувствительность клеток грызунов к ионизирующей радиации
- •11. V(d)j рекомбинация
- •12. Перемещение мобильного элемента Sleeping Beauty
- •13. Пострепликативная репарация
- •13.1. Пострепликативная, или рекомбинационная, репарация
- •13.2. Убиквитин и убиквитин-связывающие белки
- •13.3. Rad6-зависимая пострепликативная репарация
- •14. Репарации поврежденных вилок репликации и ресинтез
- •14.1. Модель прохода повреждения с переключением матрицы
- •14.2. Остановка репликации и ресинтез. Привлечение белков репарации
- •15. Современные представления и знания о механизмах активации чекпойнтов и белках, вовлеченных в разные стадии этого процесса
- •15.1. Генеральные концепции и основные игроки
- •15.2. Молекулярные механизмы g1-чекпойнта
- •15.2. Молекулярные механизмы s-чекпойнта
- •15.3. Молекулярные механизмы g2-чекпойнта
- •15.4. Чекпойнты, вызванные повреждениями днк и репарация двунитевых разрывов
- •Заключение
- •Приложения Приложение 1
- •Xpa, xpb, xpc, xpd, xpe, xpf, xpg – пигментная ксеродерма
- •Приложение 2
- •Cписок литературы
7.1. Сайт-специфическая рекомбинация
Этот тип рекомбинации связан с обменом между специфическими последовательностями и характерен для прокариот и дрожжей. Сайт-специфическая рекомбинация обычно происходит при интеграции фаговых геномов в бактериальную хромосому. В результате рекомбинации обмениваются специфические последовательности фаговой и бактериальной ДНК, обнаруживающие короткие – 100–150 нуклеотидных пар – участки гомологии. Ферменты, вовлеченные в это событие, действуют только на особую пару последовательностей-мишеней. Сайт-специфическая рекомбинация была открыта в результате исследований механизма перемещения бактериофага λ по хромосоме E.coli. В интегрированном состоянии вирус внедрен в бактериальную хромосому и реплицируется как часть ДНК клетки-хозяина. Когда вирус проникает в клетку, на матрице вирусного гена синтезируется фермент λ-интеграза. Этот фермент и катализирует сайт-специфическую рекомбинацию. Процесс начинается с того, что молекулы интегразы плотно связываются со специфическими последовательностями на кольцевой хромосоме фага. Затем получившийся ДНК-белковый комплекс связывается со сходными, но не идентичными последовательностями на бактериальной хромосоме, сближая таким образом бактериальную и фаговую хромосомы. Затем интеграза делает надрезы в молекулах ДНК, формируя маленький участок сочленения гетеродуплекса. Интеграза напоминает ДНК-топоизомеразу в том отношении, что она формирует ковалентную связь с ДНК в тех же местах, где и разрывает ДНК. У бактерий топоизомераза I и гираза являются ключевыми ферментами, определяющими степень суперскрученности ДНК при ее ответе на стрессовые внешние воздействия – такие как повышение температуры, изменении рН и оксидативный стресс. Топоизомераза I катализирует две основные реакции – разрезание и воссоединение однонитевой нормально спаренной ДНК для релаксации ее суперскрученности при репликации или транскрипции. Множество эндогенных факторов действуют на эти две реакции разобщающее и приводят к образованию и накоплению ТорI-разрешающего комплекса, который является переходным к образованию двунитевыфх разрывов ДНК со всеми вытекающими последствиями.
Тот же самый механизм сайт-специфической рекомбинации приходит в действие, только в обратном направлении, когда фаг λ вырезается из сайта интеграции.
7.2. Случайная рекомбинация
Рекомбинация между негомологичными последовательностями нуклеотидов происходит в клетках прокариот и дрожжей достаточно редко, а в клетках млекопитающих – довольно часто. К негомологичной рекомбинации можно отнести процесс случайного встраивания вирусной или плазмидной ДНК в ДНК клеток животных.
Многие мобильные последовательности ДНК, включая вирусы и транспозоны, кодируют интегразы (другое название – транспозазы), которые позволяют их ДНК встраиваться в хромосомы с помощью механизма, отличающегося от сайт-специфической рекомбинации, которую использует бактериофаг λ. Так же, как и λ-интеграза, эти ферменты опознают специфические последовательности ДНК в соответствующем мобильном элементе, встриивание или вырезание которого они катализируют. В отличие от интегразы фага λ, эти интегразы/транспозазы не требуют специфических последовательностей ДНК в хромосоме-мишени и не формируют сочленения гетеродуплекса. Вместо этого они образуют надрезы с обоих концов линейной последовательности мобильного элемента, а затем катализируют взаимодействие этих концов ДНК с ДНК-мишенью, разрывая в ней фосфодиэфирные связи. Так как это разрезание происходит в разных нитях не прямо друг напротив друга, а с «зазором» в несколько нуклеотидов, то в результате в рекомбинантной молекуле ДНК образуются две короткие однонитчатые бреши, по одной на каждом конце мобильного элемента. На завершающем этапе процесса рекомбинации эти бреши застраиваются ДНК-полимеразой. Таким образом в ДНК клетки-хозяина образуются короткие дуплицированные прямые повторы, прилежащее к месту инсерции мобильного элемента. Такие фланкирующие прямые повторы являются отличительной чертой случайной, или транспозиционной рекомбинации. Мы еще вернемся к процессу негомологической рекомбинации при описании негомологического воссоединения двунитевых разрывов ДНК. Там же будет и приведен соответствующий рисунок.