
- •Экология. Повреждение и репарация днк. Ирина Михайловна Спивак Предисловие
- •Введение
- •1. Изучение днк-метаболизма
- •1.1. Начало исследования репарации
- •1.2. Репликация днк
- •1.2.1. Репарация за счет проверки днк-полимеразой
- •1.2.2. Участие корректирующих автономных экзонуклеаз в репликации и репарации днк
- •2. Типы повреждений днк
- •3. Многообразие систем репарации днк
- •4. Прямая репарация днк
- •4.1. Фотореактивация
- •4.2. Репарация о6-алкилированного гуанина
- •4.3. Репарация однонитевых разрывов днк
- •4.4. Репарация ар-сайтов за счет прямой вставки пуринов
- •5. Эксцизионная репарация
- •5.1. Эксцизионная репарация оснований (base excision repair, ber)
- •5.1.1. Многочисленные возможности репарации 8-оксигуанина
- •5.1.2. Роль pcna в эксцизионной репарации оснований
- •5.1.3. Ber, спаренная с репликацией
- •5.2. Эксцизионная репарация неспаренных оснований (mismatch repair, mmr)
- •5.2.1. Функциональные гены-гомологи у про– и эукариот
- •5.3. Эксцизионная репарация нуклеотидов (ner, nucleotide excision repair)
- •5.3.1. Эксцизионная репарация нуклеотидов у эукариот
- •5.3.2.Ner, спаренная с транскрипцией: tcr (transcription coupled repair)
- •5.3.3. Болезни, связанные с нарушением системы ner
- •5.3.3.1. Пигментная ксеродерма (хр)
- •5.3.3.2. Тиотриходистрофия (ttd). Транскрипционная гипотеза
- •5.3.3.3. Синдром Коккейна. (cs)
- •5.3.3.4. Cиндромы повышенной чувствительности к уф-облучению (uvs-s)
- •6. Репарация, связанная с рекомбинацией
- •7. Рекомбинация
- •7.1. Сайт-специфическая рекомбинация
- •7.2. Случайная рекомбинация
- •7.3. Гомологичная рекомбинация
- •7.3.1. Генная конверсия
- •8.1. Низкопроцессивные днк-полимеразы эукариот
- •9. Репарация двунитевых разрывов
- •9.1. Репарация двунитевых разрывов днк путем негомологического воссоединения концов (nhej)
- •9.2. Однонитевой отжиг (ssa, single strand annealing)) по прямым повторам
- •9.3. Репарация путем гомологической рекомбинации (hrr)
- •9.3.1. Роль гистона н2ах в репарации dsBs
- •9.3.2. Механизмы, обеспечивающие стабильность хромосом при наличии повторов и системы гомологической рекомбинации
- •9.3.3. Болезни, связанные с дефектами генов, вовлеченных в репарацию двунитевых разрывов
- •9.3.3.1. Атаксия-телеангиэктазия. Белок атм
- •9.3.3.2. Белки brca1 и brca2
- •9.3.3.3. Геликазы семейства RecQ
- •9.3.3.4. Синдром Блюма
- •9.3.3.5. Синдром Вернера
- •9.3.3.6. Анемия Фанкони
- •10. Защитники генома
- •10.1. Защитники генома. Белок р53
- •10.2. Защитники генома. Роль parp в репарации
- •10.3. Белки, комплементирующие чувствительность клеток грызунов к ионизирующей радиации
- •11. V(d)j рекомбинация
- •12. Перемещение мобильного элемента Sleeping Beauty
- •13. Пострепликативная репарация
- •13.1. Пострепликативная, или рекомбинационная, репарация
- •13.2. Убиквитин и убиквитин-связывающие белки
- •13.3. Rad6-зависимая пострепликативная репарация
- •14. Репарации поврежденных вилок репликации и ресинтез
- •14.1. Модель прохода повреждения с переключением матрицы
- •14.2. Остановка репликации и ресинтез. Привлечение белков репарации
- •15. Современные представления и знания о механизмах активации чекпойнтов и белках, вовлеченных в разные стадии этого процесса
- •15.1. Генеральные концепции и основные игроки
- •15.2. Молекулярные механизмы g1-чекпойнта
- •15.2. Молекулярные механизмы s-чекпойнта
- •15.3. Молекулярные механизмы g2-чекпойнта
- •15.4. Чекпойнты, вызванные повреждениями днк и репарация двунитевых разрывов
- •Заключение
- •Приложения Приложение 1
- •Xpa, xpb, xpc, xpd, xpe, xpf, xpg – пигментная ксеродерма
- •Приложение 2
- •Cписок литературы
5.1.3. Ber, спаренная с репликацией
Тот же самый PCNA-связывающий мотив найден и в двух недавно описанных человеческих гликозилазах UNG2 и MYH1. Главными субстратами для этих гликозилаз служат некорректно встраивающиеся в процессе репликации урацил напротив аденина и аденин напротив 8-оксигуанина соответственно. UNG2 содержит PCNA-связывающий мотив в своей N-концевой части и является основной ДНК-урацил-гликозилазой человека. Напротив, N-конец UNG1, митохондриальной формы урацил-гликозилазы, содержит сигнал, указывающий на ее митохондриальную локализацию, но не PCNA-связывающий мотив. MYH является гомологом MutY E.coli, все ее формы несут PCNA-связывающий мотив в своем С-конце, вне зависимости от наличия у них сигнала митохондриальной локализации.
Предложено два объяснения возможного механизма, при котором эти две гликозилазы связываются с PCNA. Первое – обе эти гликозилазы могут преимущественно привлекать PCNА в район АР-сайта после выщепления неправильного основания, и таким образом направлять реакцию репарации по ее PCNA-зависимой ветви. Вторая возможность состоит в том, что UNG2 и MYH благодаря связыванию с PCNA могут ассоциироваться с «машиной репликации». Недавние исследования показали, что UNG2 может связываться с «машиной репликации» и через PCNA и через RPA (replication protein A, эукариотический гомолог белка SSB прокариот, состоящий из 3 субъединиц). Это больше подходит ко второму объяснению, но не отбрасывает и первого.
Урацил, являющийся субстратом UNG2, может попадать в ДНК двумя путями – при встраивании урацил-трифосфата во время репликации и дезаминировании уже встроенного цитозина. В первом случае, вновь встроенный урацил спаривается с аденином, и частота этого встраивания зависит от размера пула предшественника. Впрочем, надо помнить, что предшественник урацила совершенно «легально» постоянно присутствует в клетке и его уровень регулируется физиологическими механизмами. Во втором случае урацил оказывается спаренным с гуанином, причем 100–500 таких пар образуется в человеческой клетке ежедневно. UNG2 способна удалять урацил из обоих положений, две другие гликозилазы TDG и MED1 (MBD4) – только во втором случае (U/G). То есть урацил, встроившийся в процессе репликации может быть удален только UNG2, а урацил, появившийся в результате дезаминирования цитозина может быть убран тремя независимыми гликозилазами.
Похожая картина и с MYH1. Основной ее мишенью является аденин напротив 8-оксигуанина. Эта неправильная пара также образуется именно в процессе репликации ДНК. Здесь нужно отметить, что полимеразы ε и δ обычно вставляют именно аденин напротив 8-оксигуанина, а полимераза β – цитозин. Связывание MYH1 с PCNA может облегчать репарацию неправильного спаривания, возникшую в процессе репликации. Другая гликозилаза – OGG1 (FPG E.coli) способствует выщеплению 8-оксоG, который возникает при прямом окислении двунитевой ДНК, напротив цитозина, но не напротив аденина. OGG1 не несет PCNA-связывающего мотива и не нуждается в его помощи для выщепления 8-оксоG. Хотя пока нет точных экспериментальных подтверждений того, что MYH1 связывается с PCNA или с «машиной репликации», но аналогия с UNG2 напрашивается сама собой. Гликозилазы, несущие PCNA-связывающий мотив участвуют в репарации повреждений, возникающих именно в процессе репликации, в отличие от тех гликозилаз, которые подобные повреждения репарировать не способны.
Рисунок 8. Схема репарации, спаренной с репликацией.
Таким образом две эти гликозилазы служат для специфической репарации, спаренной с репликацией, путем прямого связывания с репликационной машиной через PCNA. Схема этого процесса оитображена на рис. 8.
Остается нерешенным еще один вопрос – как эти две гликозилазы участвуют в репарации АР-сайтов. После действия UNG2 может включаться как PCNA-зависимый так и polβ зависимый процесс, так что тут все более-менее ясно. А вот MYH отличается тем, что не может использовать PCNA-зависимый путь, при котором синтез ведет polδ, так как polδ обязательно снова вставит аденин напротив 8-оксоG, и нарушение ДНК будет самовоспроизводиться в процессе репарации. Для репаративного синтеза может быть использован только polβ-зависимый путь, так как только polβ вставит напротив 8-оксоG цитозин