
- •1. “Сильное” регулирование возбуждения см.
- •2. Аварийные режимы и неисправности силовых трансформаторов.
- •3. Автоматические контакторы и выключатели.
- •4. Активное и реактивное сопротивление элементов сети (физический смысл, математическое определение), полное сопротивление сети.
- •5. Аналитическое, имитационное, комбинированное моделирование в сапр систем электроснабжения.
- •6. Векторная диаграмма токов и напряжений при резонансе
- •7. Виды и принципы работы выключателей.
- •8. Включение r-l и r-c цепи под постоянное напряжение.
- •9. Влияние арв на протекание переходных процессов.
- •10. Влияние двигательной нагрузки на величину токов кз.
- •11. Влияние ку на статическую устойчивость узла нагрузки.
- •12. Возбуждение см, способы и устройства гашения поля.
- •13. Воздействие токов кз на электрооборудования.
- •14. Выбор кку в системах электроснабжения промпредприятий
- •15. Выбор напряжений при проектировании сэс.
- •16. Выбор оптимального варианта системы электроснабжения, недостатки метода
- •17. Выбор разрядников и изоляции электрооборудования в зависимости от режима нейтрали
- •18. Выбор сечения кабельных и воздушных линий.
- •19. Выбор числа и мощности цеховых трансформаторов.
- •20. Диаграмма напряжений в несимметричной трехфазной сети.
- •21. Допустимые величины сопротивления заземления и напряжений прикосновения в эу 0,4-110 кВ
- •22. Допустимые перегрузки трансформаторов.
- •23. Закон Ома для постоянного и переменного тока.
- •24. Закон электромагнитной индукции.
- •25. Зачем шихтуются магнитопроводы
- •26. Защита лэп от прямых попаданий молнии.
- •31. Защита силовых трансформаторов от внутренних повреждений
- •32. Защита силовых трансформаторов от сквозных кз и от перегрузок
- •33. Изоляция основных элементов сэс (вл, кл, трансформаторов, коммутационной аппаратуры)
- •34. Инвертированные базы данных. Организация информационного фонда сапр
- •35. Испытания трансформаторов после монтажа
- •36. Источники реактивной энергии и области их применения
- •37. Какие устройства применяются в сэс для борьбы с гармониками
- •38. Максимальная токовая защита
- •39. Математические модели, используемые в сапр (требования, классификация, методика получения)
- •40. Метод симметричных составляющих в трехфазных цепях
- •41. Механические характеристики ад.
- •42. Монтаж вл и кл
- •43. Направления оптимизации управления промышленных электроустановок
- •44. Область применения ад
- •45. Область применения дпт
- •46. Определение величин токов при замыкании фазы на землю в сэс с изолированной нейтралью
- •47. Определение годовых потерь электроэнергии
- •48. Определение мест расположения источников питания в сэс
- •49, 50. Определение оптимальных значений реактивной мощности в сэс
- •51. Определение параметров элементов сэс при расчете несимметричных кз
- •56. Основные виды канализации электроэнергии
- •57. Основные правила производства работ в электроустановках
- •58. Основные правила тб производства работ в электроустановках
- •59. Причины возникновения несинусоидальности токов и напряжений
- •60, 61. Основные системы конструктивного выполнения электроизмерительных приборов
- •3Ферродинамическая система
- •8Измерительные тт и тн
- •64. Основные требования, предъявляемые к устройствам рз
- •65. Основные узлы вращающихся электрических машин. Их назначение.
- •66. Основные факторы, влияющие на процесс старения изоляции.
- •67. От каких показателей зависит оптимальное значение реактивной мощности, получаемой предприятием от энергосистемы. Недостатки методики его определения
- •68. Отключение токов нагрузки, токов короткого замыкания. Способы гашения электрической дуги
- •69. Первый и второй законы Кирхгофа:
- •71. Показатели качества электроэнергии:
- •72. Понятие о периодической и апериодической составляющих тока кз. Действующее значение тока кз, ударный ток, мощности кз:
- •74. Понятие о шаговом напряжении, напряжении прикосновения.
- •75. Предохранители.
- •77. Представление об активной, реактивной, полной мощности сети, о коэффициенте мощности в электрических сетях.
- •78. Преобразовательные подстанции
- •79. Принцип образования синусоидальной формы напряжения на зажимах генераторов; источники искажения синусоидальности, устройства для борьбы с гармониками
- •80. Принцип образования 3х фазных систем
- •81. Профилактические испытания изоляции электрооборудования
- •82. Пуск ад и сд
- •83. Расчет параметров установившегося режима разомкнутых сэс при заданном напряжении в центре питания и нагрузках потребителей.
- •84. Расчёт потерь электроэнергии в силовых трансформаторах, ад, кабельных и воздушных линиях
- •87. Расчет электрических нагрузок
- •88. Регулирующий эффект нагрузки
- •89. Режимы работы нейтралей эс
- •91. Связи между напряжением и током в r, l, c электрической цепи
- •94. Способы ограничения токов кз.
- •95. Способы регулирования графиков нагрузки.
- •96. Способы регулирования напряжения
- •97. Способы регулирования скорости вращения ад.
- •99. Сравнительная оценка механических характеристик дпт.
- •100. Средства, обеспечивающие нормируемые показатели качества электроэнергии в системах электроснабжения
- •101. Статическая устойчивость узла нагрузки
- •102. Статическая устойчивость электропередачи.
- •103. Структура сапр систем электроснабжения.
- •104. Схемы внутреннего электроснабжения цехов предприятий
- •105. Схемы выпрямления (соединения, диаграммы токов и напряжений)
- •106. Технические средства, обеспечивающие статическую и динамическую устойчивость
- •107. Уменьшение потерь электроэнергии на корону. Физика процессов
- •109. Устройства компенсации реактивной мощности
- •110. Физика возникновения электромагнитных пп в электрических цепях.
- •111. Электрические контакты в элементах системы электроснабжения
72. Понятие о периодической и апериодической составляющих тока кз. Действующее значение тока кз, ударный ток, мощности кз:
Уравнение
полного тока КЗ
Периодическая составляющая которая при рассматриваемых условиях является принужденным током с постоянной амплитудной составляющей
где – Zк полное сопротивление периодического амплитудного значения к участку цепи КЗ
Imn амплитудное значение периодической составляющей тока.
Апериодическая составляющая тока - свободный ток, затухающий по экспоненте. Начальное значение определяется начальными условиями
ia[0]=i[0]-iп[0]=Iм*sin(α-φн)-Iпм*sin(α-φк)
Максимальное мгновенное значение полного тока КЗ называется ударным током, его находят при наибольшем значении апериодической составляющей, считая, что он наступает приблизительно через пол периода с момента возникновения КЗ.
Действующим значением тока в произвольный момент ПП называют его величину определяемую как среднеквадратичное значение за один период Т, в середине которого находится рассматриваемый момент. В соответствии с этим определением при известной зависимости тока (i=f(t)) для действующего значения тока в момент Т:
Отключающую
способность выключателя при номинальном
его напряжении Uн характеризуют
номинальным отключаемым током Iот.н или
пропорциональной ему номинальной
отключаемой мощности:
; соответственно, когда проверка
выключателя производится по отключаемой
мощности, последняя должна быть
сопоставлена с так называемой мощностью
короткого замыкания,
которая независимо от вида КЗ определяется:
74. Понятие о шаговом напряжении, напряжении прикосновения.
Шаговое напряжение - разность потенциалов, возникающая между ногами человека, вошедшего в зону падения кабеля на поверхность земли и создавшего там довольно большую напряжённость электрического поля. Входить и выходить из зоны опасного шагового напряжения необходимо либо мелкими шажками, либо прыжками, не расставляя ноги.
Радиус опасного шагового напряжения равен 8-20м от места падения кабеля (это зависит от величины напряжения) Например, в сады идёт напряжение 6 кВ, а максимальное напряжение, идущее в ЛЭП - 800Кв (постоянное напряжение) и 750Кв (переменное).
U
ш
=kшIзRз,
где kш–
0.5÷0.6 – коэффициент шагового напряжения.
Если напряжение прикосновения уменьшается по мере приближения к месту замыкания, то шаговое напряжение, наоборот увеличивается. Очень опасно шаговое напряжение при обрыве проводов, нельзя приближаться к проводу, лежащему на земле менее, чем на 5 м (для 20кВ).
В сетях напряжением до 1000В с заземленной нейтралью для обеспечения надежной защиты выполняется зануление. Зануление – преднамеренное соединение с нулевым защитным проводником металлических токоведущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус или по другим причинам.
Принцип действия зануления – превращение замыкания на корпус в однофазное короткое замыкание с целью вызвать большой ток, способный обеспечить срабатывание защиты и автоматически отключить поврежденную установку от питающей сети.
Человек, находясь вблизи заземленного оборудования, имеющего замыкание на корпус, и касаясь корпуса, окажется под воздействием только части полного напряжения.
Данное напряжение называется напряжением прикосновения Uпр. Напряжение прикосновения равно разности напряжений относительно земли –напряжения поврежденного оборудования относительно земли (точка а, рис.2) и напряжения места (пола), на котором стоит человек, относительно земли (точка б, рис.2), следовательно, это напряжение в цепи тока замыкания между двумя ее точками, которых человек может коснуться одновременно. Напряжение прикосновения определяется по формулеUпр =kпрIзRз, где kпр – коэффициент прикосновения (kпр =0.75÷1), при трубчатых полосовых заземлителях.
Напряжение прикосновения будет тем больше, чем больше напряжение относительно земли Uз на электрооборудовании, имеющем замыкание на корпус. Уменьшая сопротивление Rз можно обеспечить предельную возможность безопасности. Поэтому Правилами безопасности устанавливается допустимое напряжение, а не величина тока. 65В – устанавливается для помещений без повышенной опасности и 36В – для помещений с повышенной опасностью; 12В – для помещений особо опасных.