
- •Содержание
- •Введение § 1. Предмет и задачи токсикологической химии, ее связь с другими дисциплинами
- •§ 2. Краткий исторический очерк возникновения и развития отечественной токсикологической химии
- •Глава I. Общие вопросы химико-токсикологического анализа
- •§ 1. Объекты химико-токсикологического анализа. Вещественные доказательсва
- •§ 2. Особенности химико-токсикологического анализа
- •§ 3. Осмотр объектов исследования и определение некоторых их свойств
- •§ 4. Предварительные пробы в химико-токсикологическом анализе
- •§ 5. План химико-токсикологического анализа
- •§ 6. Организация органов судебно-медицинской и судебно-химической экспертизы в ссср
- •§ 7. Эксперт-химик
- •§ 8. Правила судебно-химической экспертизы вещественных доказательств
- •§ 9. Акт судебно-химической экспертизы вещественных доказательств
- •§ 10. Некоторые вопросы терминологии в токсикологической химии
- •§ 11. Классификация ядовитых и сильнодействующих веществ в токсикологической химии
- •Глава II. Отравления и некоторые вопросы токсикокинетики ядов
- •§ 1. Отравления и их классификация
- •§ 2. Пути поступления ядов в организм
- •§ 3. Всасывание ядов в организме
- •§ 4. Распределение ядов в организме
- •§ 5. Связывание ядов в организме
- •§ 6. Выделение ядов из организма
- •§ 7. Факторы, влияющие на токсичность химических соединений
- •§ 8. Методы детоксикации
- •§ 9. Метаболизм чужеродных соединений
- •§ 10. Окисление чужеродных соединений
- •§ 11. Восстановление чужеродных соединений
- •§ 12. Гидролиз чужеродных соединений
- •§ 13. Дезалкилирование, дезаминирование и десульфирование чужеродных соединений
- •§ 14. Другие метаболические превращения
- •§ 15. Реакции конъюгации
- •§ 16. Посмертные изменения лекарственных веществ и ядов в трупах
- •§ 17. Разложение биологического материала после наступления смерти
- •§ 18. Изменение ядов при разложении трупов
- •Глава III. Методы анализа, применяемые в токсикологической химии
- •§ 1. Метод экстракции
- •§ 2. Микрокристаллоскопический анализ
- •§ 3. Метод микродиффузии
- •Глава IV. Ядовитые и сильнодействующие вещества, изолируемые из биологического материала перегонкой с водяным паром
- •§ 1. Аппараты для перегонки с водяным паром
- •§2. Влияние рН среды на перегонку химических соединений с водяным паром
- •§ 3. Перегонка ядовитых веществ с водяным паром из подкисленного биологического материала
- •§ 4. Перегонка ядовитых веществ с водяным паром из подкисленного, а затем из подщелоченного биологического материала
- •§ 5. Фракционная перегонка веществ, содержащихся в дистиллятах
- •§ 6. Синильная кислота
- •§ 7. Формальдегид
- •§ 8. Метиловый спирт
- •§ 9. Этиловый спирт
- •§ 10. Изоамиловый спирт
- •§ 11. Ацетон
- •§ 12. Фенол
- •§ 13. Крезолы
- •§ 14. Хлороформ
- •§ 15. Хлоралгидрат
- •§ 16. Четыреххлористый углерод
- •§ 17. Дихлорэтан
- •§ 18. Реакции, позволяющие отличить хлорпроизводные друг от друга
- •§ 19. Тетраэтилсвинец
- •§ 20. Уксусная кислота
- •§ 21. Этиленгликоль
- •Глава V. Ядовитые и сильнодействующие вещества, изолируемые из биологического материала подкисленным этиловым спиртом или подкисленной водой
- •§ 1. Развитие методов выделения алкалоидов и других азотистых оснований из биологического материала
- •§ 2. Влияние рН среды на изолирование алкалоидов и других азотистых оснований из биологического материала
- •§ 3. Влияние состава извлекающих жидкостей на изолирование алкалоидов и других азотистых основании из биологического материала
- •§ 4. Влияние подкисленной воды и подкисленного спирта на извлечение примесей, переходящих в вытяжки из биологического материала
- •§ 5. Очистка вытяжек из биологического материала от примесей
- •§ 6. Экстракция алкалоидов и других токсических веществ из вытяжек
- •§ 7. Обнаружение ядовитых веществ, изолируемых подкисленной водой или подкисленным этиловым спиртом
- •§ 8. Количественное определение токсических веществ, изолированных подкисленной водой или подкисленным спиртом
- •§ 9. Метод выделения токсических веществ, основанный на изолировании их этиловым спиртом подкисленным щавелевой кислотой
- •§ 10. Метод выделения токсических веществ, основанный на изолировании их водой, подкисленной щавелевой кислотой
- •§ 11. Метод выделения токсических веществ, основанный на изолировании их водой, подкисленной серной кислотой
- •§ 12. Барбитураты и методы их исследования
- •§ 13. Барбамил
- •§ 14. Барбитал
- •§ 15. Фенобарбитал
- •§ 16. Бутобарбитал
- •§ 17. Этаминал-натрий
- •8. Обнаружение этаминала-натрия по уф- и ик-спектрам.
- •§ 18. Бензонал
- •§ 19. Гексенал
- •§ 20. Производные ксантина
- •§ 21. Кофеин
- •§ 22. Теобромин
- •§ 23. Теофиллин
- •§ 24. Наркотин
- •§ 25. Меконовая кислота
- •§ 26. Меконин
- •§ 27. Ноксирон
- •§ 28. Салициловая кислота
- •§ 29. Антипирин
- •§ 30. Амидопирин
- •§ 31. Фенацетин
- •§ 32. Хинин
- •§ 33. Опий и омнопон
- •§ 34. Морфин
- •§ 35. Кодеин
- •§ 36. Папаверин
- •§ 37. Галантамин
- •§ 38. Анабазин
- •§ 39. Никотин
- •§ 40. Ареколин
- •§ 41. Кониин
- •§ 42. Атропин
- •§ 43. Скополамин
- •§ 44. Кокаин
- •§ 45. Стрихнин
- •§ 46. Бруцин
- •§ 47. Резерпин
- •§ 48. Пахикарпин
- •§ 49. Секуренин
- •§ 50. Эфедрин
- •§ 51. Аконитин
- •§ 52. Новокаин
- •§ 53. Дикаин
- •§ 54. Аминазин
- •§ 55. Дипразин
- •§ 56. Тизерцин
- •§ 57. Хлордиазепоксид
- •§ 58. Диазепам
- •§ 59. Нитразепам
- •§ 60. Оксазепам
- •§ 61. Апоморфин
- •§ 62. Дионин
- •§ 63. Промедол
- •Глава VI. Вещества, изолируемые из объектов минерализацией биологического материала
- •§ 1. Связывание «металлических ядов» биологическим материалом
- •§ 2. Методы минерализации органических веществ
- •§ 3. Сухое озоление и сплавление органических веществ
- •§ 4. Окислители, применяемые для минерализации органических веществ
- •§ 5. Отбор и подготовка проб биологического материала для минерализации
- •§ 6. Разрушение биологического материала азотной и серной кислотами
- •§ 7. Разрушение биологического материала хлорной, азотной и серной кислотами
- •§ 8. Разрушение биологического материала пергидролем и серной кислотой
- •§ 9. Дробный метод и систематический ход анализа «металлических ядов»
- •§ 10. Маскировка ионов в дробном анализе
- •§ 11. Реактивы, применяемые в дробном анализе «металлических ядов» для маскировки ионов
- •§ 12. Реакции, применяемые в химико-токсикологическом анализе для обнаружения ионов металлов
- •§ 13. Соединения бария
- •§ 14. Соединения свинца
- •§ 15. Соединения висмута
- •§ 16. Соединения кадмия
- •§ 17. Соединения марганца
- •§ 18. Соединения меди
- •§ 19. Соединения мышьяка
- •§ 20. Соединения серебра
- •§ 21. Соединения сурьмы
- •§ 22. Соединения таллия
- •§ 23. Соединения хрома
- •§ 24, Соединения цинка
- •§ 25. Соединения ртути
- •§ 26. Количественное определение «металлических ядов» в минерализатах
- •§ 27. Количественное определение ртути
- •§ 28. Экстракционно-фотоколориметрическое определение меди
- •Глава VII. Вещества, изолируемые из биологического материала настаиванием исследуемых объектов с водой
- •Минеральные кислоты и щелочи
- •§ 1. Серная кислота
- •§ 2. Азотная кислота
- •§ 3. Соляная кислота
- •§ 4. Гидроксид калия
- •§ 5. Гидроксид натрия
- •§ 6. Аммиак
- •§ 7. Нитриты
- •Глава VIII. Ядохимикаты и методы их химико-токсикологического анализа
- •§ 1. Классификация ядохимикатов
- •§ 2. Гексахлорциклогексан (гхцг)
- •§ 3. Гептахлор
- •§ 4. Фосфорсодержащие органические соединения и методы их анализа
- •§ 5. Хлорофос
- •§ 6. Карбофос
- •§ 7. Метафос
- •§ 8. Карбарил
- •§ 9. Гранозан
- •Глава IX. Вещества, определяемые непосредственно в биологическом материале
- •§ 1. Оксид углерода (II)
- •§ 2. Спектроскопический метод обнаружения оксида углерода (II) в крови
- •§ 3. Химические методы обнаружения оксида углерода (II) в крови
- •§ 4. Количественное определение оксида углерода (II) в крови
- •Приложение 1. Приготовление реактивов
- •Приложение 2. Приготовление хроматографических пластинок
- •Список рекомендуемой литературы
§ 26. Количественное определение «металлических ядов» в минерализатах
Все объявления
ЯндексДирект
Дать объявление
Растворители в различной фасовке
Растворители 646,ацетон, у-спирит, скипидар,лак НЦ и БТ, краски МА и ПФ,в/э
www.chemservice.ru
Для количественного определения «металлических ядов» в химико-токсикологическом анализе применяются гравиметрические, титриметрические и фотоколориметрические методы. Большинство этих методик изложено в методических указаниях, изданных Главной судебно-медицинской экспертизой Министерства здравоохранения СССР. Описание этих методик приведено в работе А. Н. Крыловой «Исследование биологического материала на «металлические яды» дробным методом» (М., Медицина, 1975).
Для количественного определения некоторых «металлических ядов» разработано по несколько методик, которые перечислены ниже.
Гравиметрический метод предложен для количественного определения бария (в виде осадка BaSO 4 ).
Титриметрические методы, предложенные для количественного определения «металлических ядов», отличаются друг от друга применяемыми для этой цели титрованными растворами. Для количественного определения соединений висмута, свинца, меди, бария, кадмия и цинка рекомендован комплексонометрический метод. Определение свинца производят с помощью иодометрического метода. Для количественного определения серебра предложен роданидометрический метод. Аргентометрический метод предложен для количественного определения мышьяка.
Большинство ионов металлов, находящихся в минерализате (или в деструктате), определяют фотоколориметрическим методом. С этой целью в качестве реактивов применяют дитизон (для определения ртути, свинца, серебра и таллия), малахитовый или бриллиантовый зеленый (для определения сурьмы и таллия), дифенилкарбазид (для определения хрома), диэтилдитиокарбаматы (для определения меди и мышьяка), тиомочевину (для определения висмута). Фотоколориметрический метод определения ионов марганца основан на переведении этих ионов в перманганат.
Визуальные колориметрические методы (методы стандартных серий) рекомендованы для количественного определения ртути и мышьяка. Ртуть определяют по интенсивности окраски суспензии Cu 2 [HgI 4 ], а мышьяк — по окраске индикаторных бумажек, пропитанных бромидом или хлоридом ртути.
§ 27. Количественное определение ртути
Все объявления
ЯндексДирект
Дать объявление
Низкотемпературные камеры
низкотемпературные морозильники с температурным режимом -24С, -55С, -85С
Адрес и телефон · www.winecoolers.ru
В химико-токсикологическом анализе для количественного определения ртути рекомендованы визуальный колориметрический метод, основанный на реакции с иодидом меди (I), и экстракционно-фотоколориметрический метод, основанный на реакции с дитизоном.
Визуальный метод определения ртути, основанный на сравнении интенсивности окраски суспензии Cu 2 [HgI 4 ] в исследуемой пробе с интенсивностью окраски суспензии в стандартной серии, имеет ряд недостатков. Наличие частиц суспензии в окрашенных растворах мешает сравнению интенсивности их окрасок. Окраска этих растворов зависит от величины частиц суспензии, скорости их оседания и т. д. Поэтому более точным и надежным является экстракционно-фотоколориметрический метод количественного определения ртути.
В качестве реактива для экстракционно-фотоколоримегрического определения ртути (II) применяют дитизон. В кислой среде при взаимодействии ионов ртути (II) с раствором дитизоиа в хлороформе или в четыреххлористом углероде образуется однозамещенный дитизонат, имеющий оранжево-желтую окраску (λ макс = 485 нм). Оптическую плотность однозамещенного дигиюната ртути (II), находящегося в фазе органического растворителя, измеряют при помощи фотоэлектроколориметра или спектрофотометра.
Дитизон с ионами ртути (II) может образовывать и двузамещенный дитизонат ртути, имеющий пурпурно-красную окраску (λ макс = 515 нм). Этот дитизонат образуется в щелочной среде, а также при недостатке дитизона.
При фотоколориметрическом определении ртути (II) и ионов некоторых других металлов используются только однозамещенные дитизонаты с более интенсивной окраской и лучшей растворимостью в органических растворителях, чем двузамещенные.
В качестве реактива для экстракционно-фотоколориметрического определения ртути применяют раствор дитизона в четыреххлористом углероде или в хлороформе. Растворимость однозамещенных дитизонатов металлов, как и самого дитизона, в хлороформе примерно на порядок выше, чем растворимость в четыреххлористом углероде.
При экстракционно-фотоколориметрическом определении ртути (II) водный раствор, содержащий эти ионы, необходимо несколько раз взбалтывать с новыми порциями раствора дитизона в четыреххлористом углероде или в хлороформе, а затем определять оптическую плотность объединенных вытяжек. Объединенные вытяжки дитизоната ртути (II) в хлороформе или в четыреххлористом углероде могут содержать и некоторое количество дитизона, непрореагировавшего со ртутью. Для освобождения раствора дитизоната ртути (II) от несвязавшегося дитизона объединенные вытяжки взбалтывают со слабым раствором аммиака или с 0,2 н. раствором гидроксида натрия, а затем с водой. При этом несвязавшийся дитизон переходит в водную фазу.
Перед определением ртути (II) в соответствующих объектах строят калибровочный график, пользуясь перечисленными ниже реактивами и растворами.
РЕАКТИВЫ И РАСТВОРЫ
1. Дитизон. 0,001 %-й раствор в хлороформе или в четыреххлорнстом углероде (см. Приложение 1, реактив 12).
2. Серная кислота (2 н. раствор).
3. Аммиак. Разбавленный раствор (к 190 мл дистиллированной воды прибавляют 10 мл 25 %-го аммиака).
4. Хлороформ свежеперегнанный.
5. Стандартный раствор ртути. В мерную колбу вместимостью 1000 мл вносят 0,1080 г оксида ртути (II) (мол. масса 216,61), прибавляют 10 мл воды н 1 мл концентрированной азотной кислоты. После растворения оксида ртути (II) в колбу прибавляют дистиллированную воду до метки. В 1 мл полученного стандартного раствора содержится 100 мкг ртути.
Построение калибровочного графика. В ряд делительных воронок вносят по 1 мл 2 н. раствора серной кислоты и по 4 мл воды. Затем в каждую делительную воронку прибавляют разные объемы стандартного раствора (0,05; 0,1; 0,3; 0,5; 0,7; 0,9; 1,0; 1,1 мл) и по 3 мл раствора дитизона в хлороформе. Содержимое делительных воронок взбалтывают в течение 2 мин и оставляют делительные воронки на такое же время для разделения фаз. После этого в колбы вместимостью 50 мл отделяют хлороформный слой из каждой делительной воронки. Взбалтывание водной фазы с новыми порциями хлороформного раствора дитизона (по 3 мл) производят до тех пор, пока не перестанет изменяться зеленая окраска прибавленного раствора дитизона. Объединенные хлороформные вытяжки, содержащие дитизонат ртути, переносят в делительные воронки, в которые прибавляют по 10 мл разбавленного раствора аммиака, и взбалтывают в течение 3 мин. Затем из каждой делительной воронки отделяют водную фазу, а хлороформный слой взбалтывают с 10 мл воды в течение
3 мин. Промытые аммиаком и водой хлороформные вытяжки отделяют от водной фазы и переносят в мерные колбы вместимостью 50 мл. Объемы объединенных хлороформных вытяжек в этих колбах доводят хлороформом до метки. Оптическую плотность полученных хлороформных вытяжек измеряют фотоэлектроколориметром ФЭК-56М в кювете с толщиной слоя жидкости 10 мм, пользуясь зеленым светофильтром, эффективная длина волны которого равна 490±10 нм. В качестве раствора сравнения применяют хлороформ.
На основании результатов измерений оптической плотности дитизоната ртути строят калибровочный график. Светопоглощение окрашенных растворов подчиняется закону Бера в пределах от 10 до 90 мкг ртути в 50 мл конечного объема. Предел определения: 10 мкг ртути в указанном конечном объеме.
Определение ртути в деструктате. Определению ртути в деструктате фотоколориметрическим методом, основанным на реакции с дитизоном, могут мешать даже незначительные количества ионов других металлов, которые образовывают окрашенные соединения с дитизоном. Для устранения мешающего влияния этих ионов применяют маскирующие средства. В качестве маскирующих средств используют растворы гидрохлорида гидроксиламина или аскорбиновой кислоты.
Для определения ртути в делительную воронку вносят 10 мл деструктата, прибавляют 1 мл 2 н. раствора серной кислоты, 4 мл воды, 5 мл 10 %-го раствора аскорбиновой кислоты и 3 мл 0,001 %-го хлороформного раствора дитизона. Содержимое делительной воронки взбалтывают в течение 2 мин и оставляют делительную воронку на такое же время для разделения фаз, а затем в колбу вместимостью 50 мл отделяют фазу органического растворителя. Водную фазу, оставшуюся в делительной воронке, взбалтывают с новыми порциями 0,001 %-го хлороформного раствора дитизона (по 3 мл) до тех пор, пока не перестанет изменяться зеленая окраска прибавленного хлороформного раствора дитизона. Объединенные хлороформные вытяжки переносят в делительную воронку, в которую прибавляют 10 мл разбавленного раствора аммиака и взбалтывают в течение 3 мин, а далее поступают, как указано при описании способа построения калибровочного графика.
Расчет содержания ртути в биологическом материале производят по калибровочному графику, пользуясь формулой
где X — содержание ртути в 100 г биологического материала, мкг; А — количество ртути, найденное по калибровочному графику, мкг; Б — объем деструктата, взятый для определения ртути, мл; В — общий объем деструктата, мл; Г — масса биологического материала, взятого на анализ, г.
В тех случаях, когда оптическая плотность окрашенного раствора дитизоната ртути во взятой пробе деструктата выходит за пределы калибровочного графика, тогда необходимо повторить опыт, взяв для количественного определения меньший объем деструктата.
Разбавление хлороформом окрашенного раствора, оптическая плотность которого выходит за пределы калибровочного графика, может быть причиной получения неправильного результата количественного определения ртути в деструктате.