
- •Теория и конструкция локомотивов (проф. Сковородников е. И., доцент Анисимов а. С.)
- •1. Системы привода главного вентилятора системы охлаждения серийных тепловозов, их сравнительная характеристика.
- •3.5.5. Определяем расчетную угловую скорость вращения вентиляторного колеса
- •3.5.6. Находим величину мощности на привод вентилятора
- •2) Привод вспомогательного оборудования тепловоза 2тэ116. Достоинства и недостатки привода.
- •3) Конструкция несущей рамы тепловоза. Расчет рамы при ударе в продольном направлении.
- •4. Методика определения коэффициента использования сцепной массы тепловоза 2тэ116.
- •5. Конструкция колесной пары тепловоза. Определение сил, действующих на ось колесной пары локомотива при движении в кривой.
- •Расчет числа секций радиатора первого контура охлаждения воды дизеля
- •3.2.1. Определяем ориентировочное число секций первого контура охлаждения, задавшись величиной Vвд.
- •3.2.2. Определяем число секций радиаторов, исходя из теплорассеивающей способности
- •3.2.4. Определяем величину температурного фактора
- •12) Конструкция рамы тележки тепловозов 2тэ10л и 2тэ10м. Силы, действующие на раму в режиме тяги.
- •13) Опорно-возвращающие устройства тепловоза 2тэ116. Определение возвращающей силы и возвращающего момента устройства.
- •14) Тяговая характеристика тепловоза 2тэ116, методика ее построения.
- •15) Определить величину изменения нагрузки на ось тепловоза 2тэ10л в режиме трогания с места с поездом расчетной массы на расчетном подъеме. Ответ- 2. Определение массы состава
- •3.2 Проверка рассчитанной массы состава на трогание с места на заданном участке
- •Локомотивные энергетические установки (доцент Балагин о. В.)
- •Упрощенный расчет топливной аппаратуры высокого давления тепловозного дизеля.
- •2.1 Максимальная цикловая подача
- •2.2 Объем описываемый плунжером при его движении от нмт к вмт :
- •2.3Диаметр плунжера:
- •Ход плунжера ;
- •Процесс топливоподачи исходные данные
- •Расчет наполнительных и отсечных отверстий
- •5 Расчет деталей топливного насоса высокого давления.
- •5.1 Расчет пружины плунжера.
- •4) Эксплуатационные характеристики тепловозных дизелей при работе на установившихся режимах.
- •5) Силы и моменты, действующие в кривошипно-шатунном механизме дизеля с V-образным расположением цилиндров
- •6) Силы и моменты, действующие в кривошипно-шатунном механизме дизеля с рядным расположением цилиндров
- •9) Управление регулятором дизеля. Электропневматический и электрогидравлический приводы регулятора дизеля и их сравнительный анализ.
- •10) Контроль и настройка геометрических размеров узлов цилиндропоршневой группы тепловозных дизелей.
- •11) Определить часовой и цикловой расход топлива для номинального режима работы дизеля типа д49 тепловоза 2тэ116.
- •12) Индикаторная диаграмма двух- и четырехтактного дизелей. Индикаторные и эффективные показатели работы дизелей.
- •Электрическое оборудование локомотивов и автоматизация локомотивов (доцент Должиков с. Н.)
- •1) Сравнительный анализ автоматических систем регулирования возбуждения тяговых генераторов тепловозов 2тэ10 и 2тэ116.
- •Процесс боксования тепловоза. Предпосылки возникновения боксования. Мероприятия, проводимые для снижения возникновения и защиты от боксования.
- •Электрическая дуга и ее гашение. Дугогасительные устройства электрических аппаратов. Основные элементы и расчет дугогасительного устройства.
- •4) Порядок настройки внешней характеристики тягового генератора при динамической системе возбуждения 2тэ10.
- •5) Порядок настройки внешней характеристики тягового генератора системы возбуждения тепловоза тэм2.
- •Технология ремонта локомотивов (доцент Фоменко в. К., доцент Данковцев в. Т.)
- •1) Основные неисправности и ремонт колесных пар локомотивов. Формирование и освидетельствование колесных пар локомотивов.
- •4) Цель и порядок испытания топливных насосов высокого давления, регулировка минимальной и максимальной производительности тнвд, принцип группировки насосов по производительности.
- •5) На тепловозе типа 2тэ10м на 15 позиции контроллера машиниста занижена мощность дизель-генераторной установки. Ваши действия по проверке и регулировке мощности дгу.
- •7) Назначение аппаратов защиты дизель-генераторной установки, их неисправности и настройка.
- •8) Контроль качества укладки коленчатых валов в блок дизеля. Как производится центровка тягового генератора с коленчатым валом дизеля?
- •9) Основные неисправности узлов электрических машин, методы контроля их параметров, порядок испытания тяговых электродвигателей по методу взаимной нагрузки.
- •10) Основные объемы работ при выполнении технических осмотров (то), текущих ремонтов (тр) и капитальных ремонтов (кр). Чем определяются межремонтные пробеги?
- •Топливо, смазочные материалы и охлаждающие жидкости (доцент Милютина л. В.)
- •Классификация смазочных материалов. Физико-химические свойства смазок.
- •2) Методы получения и очистки воды для тепловозных дизелей. Физико-химические свойства воды.
- •3) Физико-химические свойства моторных масел. Методы регенерации масел.
- •4) Схема получения топлива и масел из нефти. Физико-химические свойства дизельного топлива.
2.3Диаметр плунжера:
мм;
принимаю по ГОСТ dП = 19 мм;
Ход плунжера ;
SП = 1,475· dП = 1,475 · 19 = 28,025 мм ;
принимаю по ГОСТ SП = 28 мм.
Профилирование профиля прямого хода выполняется в два этапа:
1-й этап – определяю максимально возможную скорость плунжера на прямом ходе Сmax , значение которой определяет скорость плунжера во время впрыскивания, а значит интенсивность впрыскивания;
2-й этап – определяю текущее значение хода S, скорости С, ускорения
W плунжера и радиусов кривизны профиля R.
Этап 1 – определение Сmax
м/с;
где nк – частота вращения кулачка, мин -1 ;
Sаг – активный геометрический ход плунжера, м;
мм;
QT – цикловая подача топлива, мм3;
η = 0.6 – коэффициент подачи топлива;
мм2;
где βаг – продолжительность активного геометрического хода плунжера, 0 ПКВ.
Βвп - продолжительность впрыскивания топлива, 0 ПКВ.
Cmax = 1.3·Cm = 1.3·2.099 = 2.7283 м/с;
Определяю ускорение плунжера на первом участке профиля, м/с2:
м/с2
;
где Хн – кинематический коэффициент в начальной точке профиля, м ;
Хн = R0 + ρ = 50 + 30 = 80 мм;
R0 – радиус начальной окружности, мм;
ωк - угловая скорость кулачка , с-1 ;
c-1;
ρ – радиус ролика толкателя, м;
Rн – радиус кривизны в начальной точке профиля, м ;
Вычисляю ход плунжера на первом участке профиля, м;
м;
Вычисляю ход плунжера на втором участке профиля, м ;
S2 = Sп – S1 = 0.028-1.53293·10-2 = 0.0126707 м ;
Вычисляю ускорение плунжера на втором участке профиля, м/с2 и присваиваю знак минус :
c-1;
Максимальное значение угла давления :
где Хс – кинематический коэффициент в конце первого участка профиля, м:
Xc = R0 + ρ + S1 = 0.05 + 0.03 + 1.53293·10-2 = 0.096 м;
Вычисляю коэффициент превышения силой пружины плунжера силы инерции возвратно-поступательно движущихся деталей привода плунжера :
где f0 – предварительная затяжка пружины плунжера , м ;
Kж – ее жесткость, Н/м;
Вычисляю радиус кривизны в конечной точке профиля, м :
м
;
где Хк – кинематический коэффициент в конечной точке профиля, м;
XK = R0 + ρ + S п = 0,05 + 0,03 + 0,028 = 0,109 м ;
Определяю по формуле Герца предельно допустимый радиус кривизны в конечной точке профиля, м;
м
;
где b = 0.03, ρ = 0,03, несущая ширина и радиус ролика толкателя, м;
E ,σд - модуль упругости материала кулачка, допустимые контактные напряжения на поверхностях ролика и толкателя, МПа ;
N – cила, передаваемая роликом на кулачек , МН ;
N = PT + PП = 5,668 ·10-5 + 1,744·10-3 = 1,801·10-3 ;
где PТ - сила от давления топлива при положении плунжера в ВМТ , МН;
PТ = РЛО · FП = 0,2 · 2,834·10-4 = 5,668·10-5 МН;
PП - сила пружины при положении плунжера в ВМТ , МН;
PП
=
МН ;
Вычисляю предельно допустимое давление топлива в надплунжерном объеме в начале второго участка, при этом силой пружины и силой инерции, направленных навстречу и близких по величине, пренебрегаю:
МПа;
мм
Угол выступа кулачка , град;
Угол профиля прямого хода, град;
;
где β1 ,β2 – углы первого и второго участка профиля прямого хода, град;
;
;
Этап 2 – определение текущих значений S, C, R, δ, PT
Профилирование первого участка профиля прямого хода:
Текущее значение хода плунжера, мм:
S = K3 · β2 ;
где
;S = 1.5 · 10-2
· β2
;
Текущее значение скорости плунжера м/с : C = K4 · β ;
где
;
Подставляя в формулы текущее значение β, вычисляю значения S и С. Результаты записываю в таблицу.
Текущее значение радиуса кривизны в любой точке профиля, м:
;
X – кинематический коэффициент, м :
X = R0 + ρ + S = 0.05 + 0.03 + S = 0.08 + S ·10-3 ;
C = 0.085 · β ; Текущее значения R, δ и Рт определяю по соответствующим формулам.
ПОСТРОЕНИЕ ПРОФИЛЯ КУЛАЧКА
Профиль прямого хода кулачка при известных R0, ρ и S = f(β) строю следующим образом: -Вычерчиваю начальную окружность радиусом R0 ;- Из центра начальной окружности вычерчиваю окружность радиусом RП1 = R0 + ρ = 50 +30 = 80 мм; -Угол профиля прямого хода разбиваю на 50;- Из центра начальной окружности вычерчиваю окружность радиусом RП2 = RП1 + SП = 80 + 28 = 108 мм;- Начиная с вершины кулачка, от окружности радиуса RП2 откладывается по радиусам величину ∆S = SП – S , где S – соответствующий ход плунжера.