
- •Теория и конструкция локомотивов (проф. Сковородников е. И., доцент Анисимов а. С.)
- •1. Системы привода главного вентилятора системы охлаждения серийных тепловозов, их сравнительная характеристика.
- •3.5.5. Определяем расчетную угловую скорость вращения вентиляторного колеса
- •3.5.6. Находим величину мощности на привод вентилятора
- •2) Привод вспомогательного оборудования тепловоза 2тэ116. Достоинства и недостатки привода.
- •3) Конструкция несущей рамы тепловоза. Расчет рамы при ударе в продольном направлении.
- •4. Методика определения коэффициента использования сцепной массы тепловоза 2тэ116.
- •5. Конструкция колесной пары тепловоза. Определение сил, действующих на ось колесной пары локомотива при движении в кривой.
- •Расчет числа секций радиатора первого контура охлаждения воды дизеля
- •3.2.1. Определяем ориентировочное число секций первого контура охлаждения, задавшись величиной Vвд.
- •3.2.2. Определяем число секций радиаторов, исходя из теплорассеивающей способности
- •3.2.4. Определяем величину температурного фактора
- •12) Конструкция рамы тележки тепловозов 2тэ10л и 2тэ10м. Силы, действующие на раму в режиме тяги.
- •13) Опорно-возвращающие устройства тепловоза 2тэ116. Определение возвращающей силы и возвращающего момента устройства.
- •14) Тяговая характеристика тепловоза 2тэ116, методика ее построения.
- •15) Определить величину изменения нагрузки на ось тепловоза 2тэ10л в режиме трогания с места с поездом расчетной массы на расчетном подъеме. Ответ- 2. Определение массы состава
- •3.2 Проверка рассчитанной массы состава на трогание с места на заданном участке
- •Локомотивные энергетические установки (доцент Балагин о. В.)
- •Упрощенный расчет топливной аппаратуры высокого давления тепловозного дизеля.
- •2.1 Максимальная цикловая подача
- •2.2 Объем описываемый плунжером при его движении от нмт к вмт :
- •2.3Диаметр плунжера:
- •Ход плунжера ;
- •Процесс топливоподачи исходные данные
- •Расчет наполнительных и отсечных отверстий
- •5 Расчет деталей топливного насоса высокого давления.
- •5.1 Расчет пружины плунжера.
- •4) Эксплуатационные характеристики тепловозных дизелей при работе на установившихся режимах.
- •5) Силы и моменты, действующие в кривошипно-шатунном механизме дизеля с V-образным расположением цилиндров
- •6) Силы и моменты, действующие в кривошипно-шатунном механизме дизеля с рядным расположением цилиндров
- •9) Управление регулятором дизеля. Электропневматический и электрогидравлический приводы регулятора дизеля и их сравнительный анализ.
- •10) Контроль и настройка геометрических размеров узлов цилиндропоршневой группы тепловозных дизелей.
- •11) Определить часовой и цикловой расход топлива для номинального режима работы дизеля типа д49 тепловоза 2тэ116.
- •12) Индикаторная диаграмма двух- и четырехтактного дизелей. Индикаторные и эффективные показатели работы дизелей.
- •Электрическое оборудование локомотивов и автоматизация локомотивов (доцент Должиков с. Н.)
- •1) Сравнительный анализ автоматических систем регулирования возбуждения тяговых генераторов тепловозов 2тэ10 и 2тэ116.
- •Процесс боксования тепловоза. Предпосылки возникновения боксования. Мероприятия, проводимые для снижения возникновения и защиты от боксования.
- •Электрическая дуга и ее гашение. Дугогасительные устройства электрических аппаратов. Основные элементы и расчет дугогасительного устройства.
- •4) Порядок настройки внешней характеристики тягового генератора при динамической системе возбуждения 2тэ10.
- •5) Порядок настройки внешней характеристики тягового генератора системы возбуждения тепловоза тэм2.
- •Технология ремонта локомотивов (доцент Фоменко в. К., доцент Данковцев в. Т.)
- •1) Основные неисправности и ремонт колесных пар локомотивов. Формирование и освидетельствование колесных пар локомотивов.
- •4) Цель и порядок испытания топливных насосов высокого давления, регулировка минимальной и максимальной производительности тнвд, принцип группировки насосов по производительности.
- •5) На тепловозе типа 2тэ10м на 15 позиции контроллера машиниста занижена мощность дизель-генераторной установки. Ваши действия по проверке и регулировке мощности дгу.
- •7) Назначение аппаратов защиты дизель-генераторной установки, их неисправности и настройка.
- •8) Контроль качества укладки коленчатых валов в блок дизеля. Как производится центровка тягового генератора с коленчатым валом дизеля?
- •9) Основные неисправности узлов электрических машин, методы контроля их параметров, порядок испытания тяговых электродвигателей по методу взаимной нагрузки.
- •10) Основные объемы работ при выполнении технических осмотров (то), текущих ремонтов (тр) и капитальных ремонтов (кр). Чем определяются межремонтные пробеги?
- •Топливо, смазочные материалы и охлаждающие жидкости (доцент Милютина л. В.)
- •Классификация смазочных материалов. Физико-химические свойства смазок.
- •2) Методы получения и очистки воды для тепловозных дизелей. Физико-химические свойства воды.
- •3) Физико-химические свойства моторных масел. Методы регенерации масел.
- •4) Схема получения топлива и масел из нефти. Физико-химические свойства дизельного топлива.
12) Конструкция рамы тележки тепловозов 2тэ10л и 2тэ10м. Силы, действующие на раму в режиме тяги.
Ответ-
На раму действуют силы тяги, которые передаются от колесных пар и букс через буксовые поводки. Сила тяги двух двигателей через шкворневую балку передается на раму кузова и далее на автосцепку.
Расчетная схема рамы приведена на рисунке 11. Величина сил на схеме показана для случая движения электровоза с допустимой скоростью в кривой без возвышения наружного рельса.
Рисунок 11 – Расчетная схема действия на раму тележки системы сил при работе ТД в тяговом режиме
В режиме тяги между элементами, входящими в систему тележки, возникают внутренние взаимодействия, вызывающие дополнительные напряжения. Одной из таких сил является сила Рдт, возникающая от работы двигателя в тяговом режиме и связанная с реализуемой силой тяги выражением:
Расчетная сила тяги двигателя принимается максимальной из условия ограничения по сцеплению при заданных скоростях движения в кН:
Силу, действующую на подвески ТД, определяется по формуле
где Lд - расстояния от оси колесной пары до оси шарнира подвески ТД
Реакции возникающие в рессорном подвешивании при работе тяговых двигателей, определяется по формуле:
При трогании электровоза с места при V = 0
13) Опорно-возвращающие устройства тепловоза 2тэ116. Определение возвращающей силы и возвращающего момента устройства.
Ответ- Опорно-возвращающее устройство тепловоза воспринимает массу всего надтележечного строения, обеспечивает устойчивое положение тележки под тепловозом при его движении, а также плавное вписывание в кривые и создание необходимых усилий, возвращающих кузов тепловоза в первоначальное положение при перемещений его относительно тележек при движении в кривых. Для равенства нагрузок от колесных пар тележек на рельсы передние опоры расположены вокруг шкворня на радиусе 1632 мм, задние — на радиусе 1232 мм. Надтележечное строение тепловоза опирается на раму тележки через четыре комбинированные опоры. Устройство передачи силы тяги с тележки на кузов выполнено шкворневым с поперечной свободноупругой подвижностью ±40 мм для улучшения условий вписывания и показателей горизонтальной динамики при движении тепловоза. Шкворень также является осью поворота тележки в горизонтальной плоскости. Гнездо шкворневой балки заполняется осевым маслом и закрывается сверху неподвижной крышкой, имеющей четыре направляющих кронштейна, в которых перемещается подвижная крышка. Конструкция шкворневого узла позволяет при вписывании тележки тепловоза в кривой участок пути перемещаться шкворню на величину 40 мм в одну и другую сторону в поперечном направлении.
Надтележечное строение тепловоза опирается на раму тележки через четыре комбинированные опоры (рис. 93), состоящие каждая из двух ступеней: нижняя жесткая ступень — роликовая опора качения, верхняя упругая — блок, содержащий семь резинометаллических элементов (РМЭ). Роликовая опора состоит из литого корпуса 19, который установлен на боковине рамы тележки по касательной к окружности с радиусом, равным радиусу поворота тележки, обеспечивая ее поворот на опорах качения, нижней опорной плиты 16, роликов 17, связанных между собой обоймами 75, и верхней опорной плиты 7. Ролики вращаются в* обоймах с неметаллическими втулками 18, которые являются подшипниками для роликов. Вся подвижная система опоры (ролики с обоймами, верхняя опорная пли 1а; при перемещениях направляется приваренными к боковым стенкам корпуса износостойкими накладками, изготовленными из стали 65Г. На поверхности качения роликов и опорных плит возникают высокие контактные напряжения, поэтому ролики изготавливают из стали 40Х и подвергают поверхностной на глубину 1,5—3 мм закалке. Опорные плиты предварительно цементируют, затем поверхность закаливают. Поверхности качения опорных плит выполнены наклонными — угол наклона составляет 2°. На прямом участке пути ролики занимают среднее положение между наклонными плоскостями. При повороте тележки относительно кузова ролики накатываются на наклонные поверхности опор. При этом возникают горизонтальные силы, создающие на опорах возвращающий момент, способствующий возврату тележки в исходное положение. Кроме возвращающих сил, лри повороте тележек в опоре возникают силы трения и момент сил трения, который способствует уменьшению виляния тележек. Ход роликовой опоры составляет ±80 мм. Упругая ступень комбинированной опоры содержит семь упругих элементов 5, расположенных между опорным кольцом 4 роликового устройства на тележке и опорным кольцом 6 на кузове тепловоза. Упругий комплект ограничен коническим стаканом 8 с обеспечением зазора, превышающего наибольший относ кузова, который происходит при прохождении тепловозом кривой радиусом 125 м. Упругий элемент 5 представляет собой резиновую шайбу, привулканизированную к стальным пластинам, имеющим выштам-пованные кольцевые зацепы для исключения поперечного сдвига элементов в комплекте и в соединениях с опорными плитами.
Рис. 93. Комбинированная опора: 1, 16 — верхняя и нижняя опорные плиты; 2 — крышка; 3 — болт; 4, 6 — опорные кольца; 5 — упругий элемент; 7 — регулировочные прокладки; 8 — конический стакан; 9, 10 — хомуты; 11 — чехол; 12 — пробка; 13 — сливная пробка; 14 — рама тележки; 15 — обойма; 17 — ролик; 18 — втулка; 19 — корпус роликовой опоры.
Каждый комплект резинометаллических элементов комбинированной опоры подвергается стендовой тарировке по высоте (размер К) с учетом динамической нагрузки, равной 140 кН (14 тс), а также проверке качества изготовления элементов. Вертикальная жесткость комплекта резинометаллических элементов составляет 55-Ю5 Н/м (550 кгс/мм), а горизонтальная жесткость — 2-105 Н/м (20 кгс/мм). Комплекты одной тележки не должны отличаться друг от друга по высоте более чем на 1 мм. Соблюдение этого требования достигается установкой регулировочных прокладок 7 под опорную часть кузова. Внутреннюю полость роликовой опоры заполняют осевым маслом. Масло в опору заливают через отверстие, закрываемое пробкой 12, а слив масла и промывку опоры производят через отверстие, закрываемое пробкой 13. Роликовая опора закрыта крышкой 2, которая предотвращает выплескивание масла из опоры ее подвижной системой. Для предотвращения попадания в комбинированную опору посторонних предметов и атмосферных осадков она закрыта чехлом 11, закрепленным на корпусе роликовой опоры и защитном кольце кузова хомутами 9 и 10. Каждая комбинированная опора по отношению к центру поворота тележки установлена так, что роликовой частью обеспечивается поворот тележки и возвращающий момент, а поперечное перемещение кузова (относ) достигается за счет поперечного сдвига каждого комплекта резинометаллических элементов. Предельный сдвиг комплекта резинометаллических элементов составляет +45 мм. Упругое опирание кузова позволяет получить дополнительный прогиб до 20 мм в рессорном подвешивании тепловоза и тем самым улучшить динамико-прочностные показатели ходовых частей экипажа тепловоза.
Определение возвращающей силы и возвращающего момента устройства.- Конструкция шкворневого узла позволяет при вписывании тележки тепловоза в кривой участок пути перемещаться шкворню на 40 мм в одну и другую сторону в поперечном направлении, причем при перемещении до 20 мм возвращающая сила возникает только за счет поперечного сдвига комплектов резинометаллических элементов комбинированных опор, а при дальнейшем перемещении она растет в результате включения в работу пружины шкворневого узла. При перемещении шкворня на 40 мм (сжатие пружины 20 мм) возвращающее усилие пружины равно 80 кН (8 тс). Такая шкворневая связь кузова с тележками в сочетании с комбинированными опорами, а также упругой связью колесных пар с тележками делает меньшими рамные давления на рельс и обратное действие веса тележки на кузов по сравнению с тепловозами с жесткими опорами и не имеющими свободно-упругого разделения масс кузова и тележек. Динамические испытания тепловоза и испытания по воздействию на путь позволили установить, что максимальный коэффициент горизонтальной динамики составляет 0,26 (по условию устойчивости поперечному сдвигу рельсо-шпальной решетки на щебеночном балласте должен быть не более 0,4); наибольший коэффициент вертикальной динамики равен 0,3 (допустимое значение для новых локомотивов 0,35); улучшились показатели горизонтальной динамики по воздействию на путь. Это позволило увеличить допустимую скорость движения тепловоза по стрелочным переводам.