
- •Теория и конструкция локомотивов (проф. Сковородников е. И., доцент Анисимов а. С.)
- •1. Системы привода главного вентилятора системы охлаждения серийных тепловозов, их сравнительная характеристика.
- •3.5.5. Определяем расчетную угловую скорость вращения вентиляторного колеса
- •3.5.6. Находим величину мощности на привод вентилятора
- •2) Привод вспомогательного оборудования тепловоза 2тэ116. Достоинства и недостатки привода.
- •3) Конструкция несущей рамы тепловоза. Расчет рамы при ударе в продольном направлении.
- •4. Методика определения коэффициента использования сцепной массы тепловоза 2тэ116.
- •5. Конструкция колесной пары тепловоза. Определение сил, действующих на ось колесной пары локомотива при движении в кривой.
- •Расчет числа секций радиатора первого контура охлаждения воды дизеля
- •3.2.1. Определяем ориентировочное число секций первого контура охлаждения, задавшись величиной Vвд.
- •3.2.2. Определяем число секций радиаторов, исходя из теплорассеивающей способности
- •3.2.4. Определяем величину температурного фактора
- •12) Конструкция рамы тележки тепловозов 2тэ10л и 2тэ10м. Силы, действующие на раму в режиме тяги.
- •13) Опорно-возвращающие устройства тепловоза 2тэ116. Определение возвращающей силы и возвращающего момента устройства.
- •14) Тяговая характеристика тепловоза 2тэ116, методика ее построения.
- •15) Определить величину изменения нагрузки на ось тепловоза 2тэ10л в режиме трогания с места с поездом расчетной массы на расчетном подъеме. Ответ- 2. Определение массы состава
- •3.2 Проверка рассчитанной массы состава на трогание с места на заданном участке
- •Локомотивные энергетические установки (доцент Балагин о. В.)
- •Упрощенный расчет топливной аппаратуры высокого давления тепловозного дизеля.
- •2.1 Максимальная цикловая подача
- •2.2 Объем описываемый плунжером при его движении от нмт к вмт :
- •2.3Диаметр плунжера:
- •Ход плунжера ;
- •Процесс топливоподачи исходные данные
- •Расчет наполнительных и отсечных отверстий
- •5 Расчет деталей топливного насоса высокого давления.
- •5.1 Расчет пружины плунжера.
- •4) Эксплуатационные характеристики тепловозных дизелей при работе на установившихся режимах.
- •5) Силы и моменты, действующие в кривошипно-шатунном механизме дизеля с V-образным расположением цилиндров
- •6) Силы и моменты, действующие в кривошипно-шатунном механизме дизеля с рядным расположением цилиндров
- •9) Управление регулятором дизеля. Электропневматический и электрогидравлический приводы регулятора дизеля и их сравнительный анализ.
- •10) Контроль и настройка геометрических размеров узлов цилиндропоршневой группы тепловозных дизелей.
- •11) Определить часовой и цикловой расход топлива для номинального режима работы дизеля типа д49 тепловоза 2тэ116.
- •12) Индикаторная диаграмма двух- и четырехтактного дизелей. Индикаторные и эффективные показатели работы дизелей.
- •Электрическое оборудование локомотивов и автоматизация локомотивов (доцент Должиков с. Н.)
- •1) Сравнительный анализ автоматических систем регулирования возбуждения тяговых генераторов тепловозов 2тэ10 и 2тэ116.
- •Процесс боксования тепловоза. Предпосылки возникновения боксования. Мероприятия, проводимые для снижения возникновения и защиты от боксования.
- •Электрическая дуга и ее гашение. Дугогасительные устройства электрических аппаратов. Основные элементы и расчет дугогасительного устройства.
- •4) Порядок настройки внешней характеристики тягового генератора при динамической системе возбуждения 2тэ10.
- •5) Порядок настройки внешней характеристики тягового генератора системы возбуждения тепловоза тэм2.
- •Технология ремонта локомотивов (доцент Фоменко в. К., доцент Данковцев в. Т.)
- •1) Основные неисправности и ремонт колесных пар локомотивов. Формирование и освидетельствование колесных пар локомотивов.
- •4) Цель и порядок испытания топливных насосов высокого давления, регулировка минимальной и максимальной производительности тнвд, принцип группировки насосов по производительности.
- •5) На тепловозе типа 2тэ10м на 15 позиции контроллера машиниста занижена мощность дизель-генераторной установки. Ваши действия по проверке и регулировке мощности дгу.
- •7) Назначение аппаратов защиты дизель-генераторной установки, их неисправности и настройка.
- •8) Контроль качества укладки коленчатых валов в блок дизеля. Как производится центровка тягового генератора с коленчатым валом дизеля?
- •9) Основные неисправности узлов электрических машин, методы контроля их параметров, порядок испытания тяговых электродвигателей по методу взаимной нагрузки.
- •10) Основные объемы работ при выполнении технических осмотров (то), текущих ремонтов (тр) и капитальных ремонтов (кр). Чем определяются межремонтные пробеги?
- •Топливо, смазочные материалы и охлаждающие жидкости (доцент Милютина л. В.)
- •Классификация смазочных материалов. Физико-химические свойства смазок.
- •2) Методы получения и очистки воды для тепловозных дизелей. Физико-химические свойства воды.
- •3) Физико-химические свойства моторных масел. Методы регенерации масел.
- •4) Схема получения топлива и масел из нефти. Физико-химические свойства дизельного топлива.
Электрическая дуга и ее гашение. Дугогасительные устройства электрических аппаратов. Основные элементы и расчет дугогасительного устройства.
Ответ- Размыкание электрической цепи при сколько-нибудь значительных токах и напряжениях, как правило, сопровождается электрическим разрядом между расходящимися контактами. Воздушный промежуток между контактами ионизируется и становится на некоторое время проводящим, в нем возникает дуга. Тем или иным способом дуга гасится, т. е. ток в цепи падает от начального значения до нуля, Физический процесс отключения состоит в деионизации воздушного промежутка между контактами, т. е. в превращении его в диэлектрик и прекращении вследствие этого электрического разряда. При особых условиях - очень малых токах и напряжениях, разрыве цепи переменного тока в момент перехода тока через нуль и некоторых других - расхождение контактов может произойти без электрического разряда. Такое отключение называется безыскровым разрывом. Электрическая дуга сопровождается высокой температурой и связана с этой температурой. Поэтому дуга - явление не только электрическое, но и тепловое.
В обычных условиях воздух является хорошим изолятором. Так, для пробоя воздушного промежутка в 1 см требуется приложить напряжение не менее 30 кВ. Для того чтобы воздушный промежуток стал проводником, необходимо создать в нем определенную концентрацию заряженных частиц - отрицательных, в основном свободных электронов и положительных ионов. Процесс отделения от нейтральной частицы одного или нескольких электронов и образования свободных электронов и положительно заряженных частиц - ионов - называется ионизацией.
Способы гашения электрической дуги
Чтобы погасить дугу постоянного тока, необходимо создать такие условия, при которых в дуговом промежутке при всех значениях тока от начального до нулевого процессы деионизации превосходили бы процессы ионизации. Независимо от способа гашения дуги постоянного тока в ней выделится энергия, запасенная в магнитном поле отключаемой цепи, плюс еще какая-то доля энергии, которая поступит от генератора за время горения дуги (в устойчиво горящей дуге вся выделяющаяся в ней энергия поступает от генератора).
При переменном токе, ток в дуге независимо от степени ионизации дугового промежутка переходит через нуль каждый полупериод, т.е. каждый полупериод дуга гаснет и зажигается вновь. Задача гашения дуги несколько облегчается. Здесь необходимо создать условия, при которых ток не восстановился бы после прохождения через нуль. При переменном токе температура дуги является величиной переменной. Однако тепловая инерция газа оказывается довольно значительной, и в момент перехода тока через нуль температура дуги не падает до нуля и остается достаточно высокой. Все же имеющее место снижение температуры дуги при переходе тока через нуль способствует деионизации промежутка и облегчает гашение.
Для гашения электрической дуги необходимо создать условия, при которых падение напряжения на дуге превосходило бы напряжение сети. Гасить дугу можно:
увеличивая ее длину (растягивая);
воздействуя на ее ствол и добиваясь повышения продольного градиента напряжения и в) используя околоэлектродные падения напряжения.
Отключающие аппараты имеют обычно два электрода, и для использования околоэлектродных падений напряжения необходимо создать дугогасительные устройства со многими электродами. Такие устройства получили название дугогасительных решёток. Существует много способов гашения электрической дуги:
-гашение открытой дуги в магнитном поле;
-гашение электрической дуги высоким давлением;
-гашение электрической дуги в масле;
-гашение электрической дуги воздушным дутьём;
-гашение дуги в дугогасительной решётке;
-использование контактной системы с тиристорным блоком бездугового отключения.
Зависимость падения напряжения на стволе дуги от тока - вольт-амперная характеристика дуги - приведена на рис. 2.3. Она представляет собой часть кривой (область III) на рис. 2.3. Напряжение, соответствующее началу дугового разряда, носит название напряжения зажигания дуги. С ростом тока напряжение на дуге уменьшается. Это означает, что сопротивление дугового промежутка падает быстрее, чем увеличивается ток. Для каждого значения тока в какой-то момент времени установится равновесное состояние, когда ионизация будет равна деионизации. Электрическое сопротивление дугового промежутка и падение напряжения на нем станут величинами постоянными, не зависящими от времени. Такой режим носит название статического, а кривая 1, характеризующая этот режим, - статической характеристики дуги. Если с той или иной скоростью уменьшить ток в дуге от I0 до нуля и при этом фиксировать падение напряжения на дуге в зависимости от тока, то получим ряд кривых 2, лежащих ниже кривой 1. Чем быстрей будет происходить уменьшение тока, тем ниже будет лежать вольтамперная характеристика дуги. В пределе, при мгновенном изменении тока до нуля, получим прямую 3. Только при медленном изменении тока процесс будет происходить по статической характеристике.
Вольтамперные характеристики дуги, полученные, при быстром изменении тока до нуля, носят название динамических. Соответствующее этим характеристикам напряжение, при котором дуга гаснет, называется напряжением гашения UГ. Если падение напряжения на дуге UД характеризует дуговой промежуток как проводник, то напряжения Uз и UГ характеризуют изоляционные свойства промежутка - они означают напряжения, которые необходимо приложить при данном состоянии промежутка, чтобы возбудить в нём электрическую дугу.
Расчет дугогасительного устройства данного типа может быть сведен к следующим операциям: определению оптимальной величины шунтирующего низкоомного сопротивления; расчету геометрических параметров дугогасителей основного и вспомогательного разрывов; выбору конструктивных размеров шунтирующего сопротивления (сечение провода, шаг намотки, изоляционный каркас и т..д.).
Для выполнения расчета величины шунтирующего сопротивления необходимы следующие исходные данные:
а)электрическая и конструктивная схемы проектируемого дугогасителя (или совокупности дугогасителей);
б) номинальная мощность отключения для одиночного комплекта;
в) номинальное напряжение, относящееся к данному комплекту;
г) частоты собственных колебаний отключаемой цепи (или параметры L и С).
Рассмотрим процесс гашения дуги в дугогасителе воздушного выключателя с двумя разрывами; из которых один зашунтирован низкоомным активным линейным сопротивлением. Расчетные электрические схемы для двух стадий гашения представлены на рис. 5-42.
Рис.
5-42. К расчету процесса гашения дуги в
дугогасителе с шунтирующим низкоомным
сопротивлением
Для
подавляющей части-полупериода тока
шунтированной сопротивлением дуги
(первая стадия гашения - рис. 5- 42, а)
справедливы соотношения:
где Uл - напряжение на первом (/) участке дуги; Um - напряжение на имитирующем сопротивлении; - ток дуги; /ш - ток в шунтирующем сопротивлении; Rm - величина шунтирующего сопротивления; і - ток отключаемой цепи. Если в первом приближении исходить из статической характеристики дуги, то для случая интенсивного продольного дутья напряжение на дуге может быть рассчитано по уравнению
где А = 1400- постоянная, характеризующая интенсивность охлаждения ствола дуги; т — показатель степени, характеризующий способ охлаждения ствола дуги (в нашем случае можно принять m=0,25); 1 — длина дуги, см\ іл — ток дуги, а. Конструктивно шунтирующие низкоомные сопротивления выполняются в виде спиралей, навитых из проволоки большого сопротивления на каркас из керамики или жаростойкой пластмассы. Форма каркаса может быть плоской или цилиндрической. Для спиралей применяются жаростойкие сплавы высокого омического сопротивления (согласно ГОСТ 2223—55) в виде круглой проволоки или ленты. Шунтирующие сопротивлений комплектуются из отдельных элементов в виде отдельного конструктивного узла» Определение основных конструктивных данных этого узла производится на основании тепловых расчетов процессов адиабатного нагрева активных. элементов и переходных процессов спадания температуры нагретых частей узла при его охлаждении. Расчет междувитковой изоляции элемента сопротивления можно вести, исходя из величины общего разрядного напряжения, величина которого может быть найдена по уравнению
где Um-амплитуда напряжения отключаемой цепи; х- реактивное сопротивление отключаемой цепи; Rm - величина шунтирующего сопротивления; kn - коэффициент запаса (надежности).