
- •Теория и конструкция локомотивов (проф. Сковородников е. И., доцент Анисимов а. С.)
- •1. Системы привода главного вентилятора системы охлаждения серийных тепловозов, их сравнительная характеристика.
- •3.5.5. Определяем расчетную угловую скорость вращения вентиляторного колеса
- •3.5.6. Находим величину мощности на привод вентилятора
- •2) Привод вспомогательного оборудования тепловоза 2тэ116. Достоинства и недостатки привода.
- •3) Конструкция несущей рамы тепловоза. Расчет рамы при ударе в продольном направлении.
- •4. Методика определения коэффициента использования сцепной массы тепловоза 2тэ116.
- •5. Конструкция колесной пары тепловоза. Определение сил, действующих на ось колесной пары локомотива при движении в кривой.
- •Расчет числа секций радиатора первого контура охлаждения воды дизеля
- •3.2.1. Определяем ориентировочное число секций первого контура охлаждения, задавшись величиной Vвд.
- •3.2.2. Определяем число секций радиаторов, исходя из теплорассеивающей способности
- •3.2.4. Определяем величину температурного фактора
- •12) Конструкция рамы тележки тепловозов 2тэ10л и 2тэ10м. Силы, действующие на раму в режиме тяги.
- •13) Опорно-возвращающие устройства тепловоза 2тэ116. Определение возвращающей силы и возвращающего момента устройства.
- •14) Тяговая характеристика тепловоза 2тэ116, методика ее построения.
- •15) Определить величину изменения нагрузки на ось тепловоза 2тэ10л в режиме трогания с места с поездом расчетной массы на расчетном подъеме. Ответ- 2. Определение массы состава
- •3.2 Проверка рассчитанной массы состава на трогание с места на заданном участке
- •Локомотивные энергетические установки (доцент Балагин о. В.)
- •Упрощенный расчет топливной аппаратуры высокого давления тепловозного дизеля.
- •2.1 Максимальная цикловая подача
- •2.2 Объем описываемый плунжером при его движении от нмт к вмт :
- •2.3Диаметр плунжера:
- •Ход плунжера ;
- •Процесс топливоподачи исходные данные
- •Расчет наполнительных и отсечных отверстий
- •5 Расчет деталей топливного насоса высокого давления.
- •5.1 Расчет пружины плунжера.
- •4) Эксплуатационные характеристики тепловозных дизелей при работе на установившихся режимах.
- •5) Силы и моменты, действующие в кривошипно-шатунном механизме дизеля с V-образным расположением цилиндров
- •6) Силы и моменты, действующие в кривошипно-шатунном механизме дизеля с рядным расположением цилиндров
- •9) Управление регулятором дизеля. Электропневматический и электрогидравлический приводы регулятора дизеля и их сравнительный анализ.
- •10) Контроль и настройка геометрических размеров узлов цилиндропоршневой группы тепловозных дизелей.
- •11) Определить часовой и цикловой расход топлива для номинального режима работы дизеля типа д49 тепловоза 2тэ116.
- •12) Индикаторная диаграмма двух- и четырехтактного дизелей. Индикаторные и эффективные показатели работы дизелей.
- •Электрическое оборудование локомотивов и автоматизация локомотивов (доцент Должиков с. Н.)
- •1) Сравнительный анализ автоматических систем регулирования возбуждения тяговых генераторов тепловозов 2тэ10 и 2тэ116.
- •Процесс боксования тепловоза. Предпосылки возникновения боксования. Мероприятия, проводимые для снижения возникновения и защиты от боксования.
- •Электрическая дуга и ее гашение. Дугогасительные устройства электрических аппаратов. Основные элементы и расчет дугогасительного устройства.
- •4) Порядок настройки внешней характеристики тягового генератора при динамической системе возбуждения 2тэ10.
- •5) Порядок настройки внешней характеристики тягового генератора системы возбуждения тепловоза тэм2.
- •Технология ремонта локомотивов (доцент Фоменко в. К., доцент Данковцев в. Т.)
- •1) Основные неисправности и ремонт колесных пар локомотивов. Формирование и освидетельствование колесных пар локомотивов.
- •4) Цель и порядок испытания топливных насосов высокого давления, регулировка минимальной и максимальной производительности тнвд, принцип группировки насосов по производительности.
- •5) На тепловозе типа 2тэ10м на 15 позиции контроллера машиниста занижена мощность дизель-генераторной установки. Ваши действия по проверке и регулировке мощности дгу.
- •7) Назначение аппаратов защиты дизель-генераторной установки, их неисправности и настройка.
- •8) Контроль качества укладки коленчатых валов в блок дизеля. Как производится центровка тягового генератора с коленчатым валом дизеля?
- •9) Основные неисправности узлов электрических машин, методы контроля их параметров, порядок испытания тяговых электродвигателей по методу взаимной нагрузки.
- •10) Основные объемы работ при выполнении технических осмотров (то), текущих ремонтов (тр) и капитальных ремонтов (кр). Чем определяются межремонтные пробеги?
- •Топливо, смазочные материалы и охлаждающие жидкости (доцент Милютина л. В.)
- •Классификация смазочных материалов. Физико-химические свойства смазок.
- •2) Методы получения и очистки воды для тепловозных дизелей. Физико-химические свойства воды.
- •3) Физико-химические свойства моторных масел. Методы регенерации масел.
- •4) Схема получения топлива и масел из нефти. Физико-химические свойства дизельного топлива.
9) Управление регулятором дизеля. Электропневматический и электрогидравлический приводы регулятора дизеля и их сравнительный анализ.
Ответ- Совершенствуя свой регулятор, конструкторы Харьковского завода транспортного машиностроения заменили электропневматический механизм более чувствительным и меньшим по размерам электрогидравлическим механизмом, регулирующим затяжку всережимной пружины. Посмотрите на рис. 92. Вы видите: электрическая часть этого механизма состоит из четырех тяговых электромагнитов 1, 2, 3, 4, три из которых находятся против трех углов треугольной пластины; гидравлическая часть механизма имеет золотник управления серводвигателем, который в свою очередь управляет затяжкой пружины.
Рис.
92. Схема электрогидравлического
механизма режима
затяжки всережимной пружины объединенного
регулятора
Машинист в своей кабине переводит рукоятку контроллера с позиции на позицию. В соответствии с этим электромагниты включаются или выключаются в установленной последовательности и различных комбинациях. Якоря включенных электромагнитов нажимают на пластину, и она под их действием изменяет свое положение в пространстве (пластину поэтому называют пространственной). Стоит пластине переместиться вниз на какую-то величину, как золотник управления серводвигателем через тяговый рычажный механизм открывает отверстие в золотниковой втулке, благодаря чему масло поступает по каналу а в надпоршневое пространство серводвигателя: поршень серводвигателя, перемещаясь вниз, сжимает всережимную пружину. Так достигается одно из семи различных положений поршня серводвигателя управления, т. е. одна из семи степеней затяжки всережимной пружины. А как увеличить количество степеней затяжки? С этой целью на помощь первым трем электромагнитам при ходит четвертый электромагнит, воздействующий не на треугольную пластину, а на... золотниковую втулку. Именно на золотниковую втулку, потому что ей самой предоставлена возможность перемещаться относительно золотника управления. Двигаясь вниз (когда четвертый электромагнит включен), втулка открывает имеющееся в ней отверстие, и масло из надпоршневого пространства серводвигателя получает выход в ванну регулятора (на рисунке не показана), при этом затяжка всережимной пружины ослабляется. Таким образом, включение четвертого электромагнита вызывает действие, противоположное действию трех остальных электромагнитов. Этим достигается еще семь ступеней ослабления затяжки всережимной пружины. Так, включение четвертого электромагнита в комбинации с электромагнитами треугольной пластины позволяет удвоить число ступеней затяжки всережимной пружины, т. е. получить 14 ступеней частоты вращения коленчатого вала дизеля.
Вместе с положением холостого хода регулятор обеспечивает 15 ступеней частоты вращения коленчатого вала.
Описанный регулятор с электрогидравлической системой управления (условное обозначение 9Д100) нашел применение на всех тепловозах 2ТЭ10Л, 2ТЭ10В, ТЭП10, ТЭП60, М62 и др., которые выпускались до 1972 г,
В 1972 г., однако, эти регуляторы были снабжены новыми устройствами. Уже давно было замечено, что упомянутый выше проволочный реостат с непосредственным электрическим контактом, во-первых, произвольно изменяет величину электрического сопротивления в месте контакта ползунка с проволочной намоткой, а значит, искажает регулирование нагрузки и, во-вторых, не позволяет плавно регулировать нагрузку. Для того чтобы обойти эти неприятности, конструкторы решили заменить его «бесконтактным реостатом» — индуктивным датчиком.
Индуктивный датчик представляет собой катушку со стальным якорем. Если через обмотку такой катушки пропустить переменный ток, то ее сопротивление будет изменяться в зависимости от положения якоря. Чем дальше задвинут якорь в катушку, тем больше ее сопротивление, и наоборот. Это свойство катушки используется для дополнительного регулирования мощности тепловозных дизель-генераторов. Обмотка катушки индуктивного датчика, питаемая переменным током, подключена посредством выпрямительного устройства (моста) в схему возбуждения генератора. Выпрямительный мост преобразовывает (выпрямляет) переменный ток в постоянный, необходимый для работы системы возбуждения тягового генератора.
Якорь индуктивного датчика соединен с серводвигателем регулятора нагрузки и изменяет свое положение при его перемещениях.
Применение бесконтактного индуктивного датчика позволило значительно повысить надежность регулятора и точность регулирования. Новый объединенный регулятор получил обозначение типа 10Д100 (в отличие от типа 9Д100). Регулятор типа 10Д100 имеет еще одно преимущество. Он снабжен дополнительным пятым электромагнитом, который устанавливает индуктивный датчик в положение минимального возбуждения. Это необходимо, например, при боксовании тепловоза.
Электропневматического привода- Наиболее распространено ступенчатое управление, когда рукоятка контроллера имеёт несколько фиксированных положений, которым соответствуют определенные положения исполнительного механизма привода управления регулятором и, следовательно, определенные величины угловой скорости (или подачи топлива).
На рис. 10.4 показана упрощенная кинематическая схема электропневматического привода управления регулятором дизеля на 16 положений, применяемого на тепловозах ТЭЗ и ТЭ7. Сжатие пружины 13 регулятора дизеля определяется положением зубчатой рейки 12, в свою очередь зависящего от положения зубчатого сек тора 11. В корпусе 7 привода управления имеются четыре цилиндра 1…4 с поршнями 5 и пружинами 6. Впуском и выпуском сжатого воздуха под поршнями цилиндров управляют электропневматические вентили ВТ включающего типа. При отключенной катушке вентиля соответствующий цилиндр соединен с атмосферой, а поршень находится в нижнем положении. После включения катушки в цилиндр впускается сжатый воздух, и поршень поднимается вверх до упора.
Когда все катушки вентилей отключены, привод занимает положение, соответствующее минимальному натяжению пружины и минимальной угловой скорости коленчатого вала дизеля. Последовательность включения катушек вентилей при повороте рукоятки контроллера машиниста с положения 1 до положения 16 изображена на схеме (см. рис. 10.4).
В положении 1 катушки остаются выключенными и сохраняется минимальная угловая скорость. В положении 2 включается вентиль ВТ1, поршень 1 цилиндра перемещается и, нажимая на ролик, поднимает левое плечо рычага. В результате этого по часовой стрелке поворачивается система рычагов, а зубчатый сектор опускает зубчатую рейку, увеличивая натяжение пружины.
В положении 3 ВТ1 выключается и включается ВТ2. Поршень 1 опускается, а поршень 2 поднимается. Плечи рычагов подобраны так, что рычаг 8 поворачивается на больший угол, чем в положении 2, что приводит к дальнейшему повороту зубчатого сектора и увеличению натяжения пружины. Включение вентилей чередуется таким образом, что зубчатая рейка постепенно опускается от положения к положению и в положении 16, когда все вентили включены, натяжение – наибольшее. Муфта 10 служит для настройки пружины регулятора при заданном положении привода. Пружина 9 стремится вернуть зубчатый сектор 11 в исходное положение при отключении вентилей.
На тепловозах ТЭ1, ТЭ2 и других применен аналогичный привод с тремя цилиндрами и вентилями. Из схемы (см. рис. 10.4) видно, что при исключении вентиля ВТ4 привод обеспечивает при сохранении последовательности включений вентилей ВТ1…ВТ3 восемь рабочих положений.
Этот привод прост и надежен в работе, но имеет тот недостаток, что натяжение пружины при переходе с одного положения на другое изменяется слишком быстро. В результате резко изменяются подача топлива и угловая скорость.
Электрогидравлический привод по конструкции несколько сложнее электропневматического, но режим работы дизеля изменяется более плавно. Для различных дизелей можно изменять скорость перемещения поршня 10 посредством игольчатого клапана 4. Привод обеспечивает плавное изменение режима работы дизеля даже в том случае, если машинист сразу переставит рукоятку контроллера на одно из последних положений.