Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

розрахунки. печать

.doc
Скачиваний:
2
Добавлен:
29.02.2020
Размер:
1.83 Mб
Скачать

Группа 1РОЗДІЛ 3. ПОРЯДОК РОЗРАХУНКУ АПАРАТУ З ПЕРЕМІШУВАЛЬНИМ ПРИСТРОЄМ

Вихідні дані: мікроорганізми поглинають розчинений кисень з питомою ( віднесеною до одиниці об’єму культурального рідкого середовища) швидкістю qvc= 1·10-3 кг/(м3·с) і в результаті біотехнологічних процесів виділяють теплоту з питомою qvt = 15 кВт/м3; робочий об’єм апарата ( об’єм некерованої культуральної рідини) Vр = 10,5 м3; витрата повітря, що подається в апарат, wг = 0,1 м3/с; температура середовища і концентрація розчиненого в ньому кисню підтримуються постійними: t=35°С; С=0,1·Ср, де Ср – концентрація насичення культурального середовища киснем повітря.

Вибір вихідних даних, яких не вистачає. Для розрахунку апарата з літературних джерел вибираємо теплофізичні параметри культуральної рідини (цукрового розчину) за температури культивування 35°С та концентрації 30%: густина ρр=994 кг/м3; коефіцієнт динамічної в’язкості μр=1,5615×10-3Па·с; теплоємність ср=4180Дж/(кг·К); коефіцієнт теплопровідності λр=0,620 Вт/ (м·К); число Прандтля Pr= 4,65.

Для відведення теплоти, що виділяється під час біохімічних реакцій і в результаті інтенсивного перемішування, потрібно встановити оболонкову поверхню охолоджування зі спіральною перегородкою, що утворює спіральні канали з кроком 0,25м і перерізом 0,25х0,03 м.

Як холодоагент використовуємо воду з температурою на вході( початковою tп=22°С і на виході ( кінцевою) tк=30°С. Теплофізичні параметри холодоагенту вибираємо за середньою температурою води tср=26°С.

Вибір типу мішалки і конструкції апарата. У разі подачі значної кількості повітря в апараті утворюється газорідинна система з високим вмістом повітря. Для інтенсивного перемішування газорідинних систем, що

прискорює адсорбцію кисню, необхідні значні напруження зсуву і циркуляція, що найкраще досягається за допомогою турбінних мішалок.

Об’єм газорідинної системи значно перевищує об’єм некерованої культуральної рідии Vр. Повний об’єм апарата можна визначити за рівнянням V=Vрзап, (1)

де φзап – коефіцієнт заповнення (залежно від особливостей культивування становить 0,5…0,7). При φзап=0,7 повний об’єм апарата

V=15/0,7=10,5 м3.

За об’ємом апарата вибираємо його внутрішній діаметр D= 2,400мм= 2,4 м.

Висота корпусу апарата На= 3,32 м.

Відповідно до ГОСТ 20680 – 86 застосовуємо апарат з еліптичним днищем і знімною кришкою ( тип 0), оболонкою ( тип 01), відкритою турбінною мішалкою в сполученні з відбивними перегородками (4 шт.) та барботером ( тип 73)

Розрахунок потужності перемішування. Перемішувальний пристрій має забезпечувати потрібну інтенсивність масопередачі. Його параметри залежать від необхідної для цього потужності перемішування.

Группа 1 Питому потужність Nі для забезпечення заданої інтенсивності масопередачі ( по кисню) в апаратах з турбінними мішалками можна розрахувати за рівнянням Кv= 0,171Nv0,44φ0,67. Для цього заздалегідь визначаємо об’ємний коефіцієнт масо передачі Кvі відносний газовміст φ.

Із загального рівняння масо передачі при повному перемішуванні маємо

,де =–питома швидкість масо передачі по кисню, кг/(м3·с);

М – маса кисню, кг; Vp – об’єм рідкої фази, м3;

- середня різниця концентрацій кисню, віднесена до рідкої фази, кг/м3.

Кисень належить до важкорозчинних у воді газів, і розчини його наближаються до ідеальних ( підпорядковується закону Генрі). Тому під час адсорбції кисню лінія рівноваги графічно визначається прямою лінією і середню різницю концентрацій можна розраховувати як її середньо логарифмічне значення ,

а при – як середньоарифметичне

,

де = ∆С рн– С – різниця концентрація на вході повітря в апарат

( більша) ; ∆Срк – С – різниця концентрацій на виході повітря з апарата

( менша);

∆С рн, ∆С рк– концентрація кисню в рідині, рівноважна з повітрям, відповідно на вході в апарат і виході з нього; С –поточна концентрація кисню, розчиненого в рідині, в процесі культивування при повному перемішуванні в усіх точках апарата С = 0,1С.

Рівноважна концентрація кисню в рідкій фазі для системи вода – повітря за сталої температури залежить від масової концентрації кисню в повітрі й загального тиску системи: ,

де р – загальний тиск, Па; Мг=32, Мр=18 – молекулярні маси відповідно газу

( кисню) і води; у – масова часка кисню в повітрі;– константа фазової рівноваги, що встановлює зв'язок між парціальним тиском кисню в повітрі й Группа 121концентрацією ( масовою часткою) його в рідкій фазі ( за температури 35ºС =5,13·109 Па)

Загальний тиск системи на виході повітря з апарата можна взяти таким, що дорівнює атмосферному: рк =1,01·105 Па. Тиск на вході за висоти стовпа

Группа 121рідини Нр= = = 1,94 м

становить рп= рк + ρр×g×Нр = 1,01·105+994·9,81·1,94 =1,19 х105Па

Масова частка кисню в атмосферному повітрі уп = 0,232.

На виході з апарата концентрація кисню в повітрі ук менша, ніж на вході ( внаслідок адсорбції зі швидкістю = Vр):

= =

= = 0,223 Па

Використовуючи знайдені значення у і р, розраховуємо рівноважні концентрації кисню на вході та виході з апарата:

= = 9,6·10-3 кг/м3 ;

= = 7,8·10-3 кг/м3 .

Концентрація розчиненого кисню

С = 0,1 = 0,1 =8,7·10-4 кг/м3.

Розраховуємо ∆Сб, ∆См, ∆Сср:

∆Сб=∆Срп– С = 9,610-3 – 8,7·10-4 = 8,7·10-3 кг/м3;

∆См = ∆Срк – С = 7,8·10-3–8,7·10-4 = 6,9·10-3 кг/м3;

= = 7,8 ·10-3 кг/м3 .

Об’ємний коефіцієнт масопередачі Кv = = 0,0256 с-1.

Відносний газовміст φ, що входить у рівняння Кv= 0,171Nv0,44φ0,67, розраховуємо за рівнянням φ = 0,5 + 3,42·10-30,5.

Для цього заздалегідь задаємо питому потужність перемішування

Nv = 0,2 кВт/м3 і визначаємо зведену швидкість повітря,

Группа 121віднесену до попереднього перерізу апарата : = = = 0,037 м/с.

Звідси φ = 0,5 + 0,0032·10-2 0,5 ;

φ = 0,384φ0,5 + 0,035; φ = 0,174.

Підставивши Кv і φ у рівняння Кv= 0,171Nv0,44φ0,67, одержуємо

= =0,193 кВ/м3.

Оскільки отримане рівняння Nv мало відрізняється від прийнятого під час розрахунку φ, у подальших уточненнях немає потреби.

Розрахунок перемішувального пристрою. Розрахунок передбачає визначення розмірів мішалки, частоти її обертання і вибір приводу, що забезпечує необхідну інтенсивність перемішування.

Вихідним розрахунковим є рівняння Nр-г= 0,695 Nр0,9, яке після підстановки Nр з рівняння N = Euмn3dм5ρ матиме вигляд

= 0,695 .

Вибравши відповідно до стандартного ряду ( ГОСТ 20680-86) частоту обертання мішалки n=2 с-1 і попередньо прийнявши значення Euм, що дорівнює такому для відкритої шестилопатевої турбінної мішалки з параметрами = = 3 ; = 1; = 0,2 в апараті з чотирма відбивними

перегородками ( = 0,3 ) при Reм10-5, Euм = = 6 по

Nр-г= NvVр =0,193· 10,5 = 2,02 кВт

Группа 121визначаємо діаметр мішалки

= = 0,63 м.

Найближчий за табл.. 5.1 діаметр мішалки dм = 0,63 м. За табл. 5.2 визначаємо інші розміри мішалки (тип 03): b =126 мм; d =60 мм; s=8 мм.

Для подальших розрахунків потрібно уточнити потужність перемішування газорідинної системи Nр- г та некерованої рідини Nр. Насамперед уточнюємо значення . Проектована мішалка відрізняється від дослідженої параметрами ГD, ГН і ГВ. Тому відповідно до рівняння

= С0ReмmFrqψм = ψм =ψD ψН ψВ = ,

- критерій Ейлера для досліджених мішалок;

при = = 1,16 ·106 приблизно за графіком визначаємо = 6; ГD = = = 3,8; ГВ = = = = 0.38 ;

ГН = = = 3,08 – симплекси геометричної подібності.

Для проектованої мішалки

= 6 =6,53.

Це значення беремо для подальших розрахунків.

Уточнюємо потужність перемішування газорідинної системи

= 0,695 = 2,01 кВт, потужність перемішування, якщо немає аерації, становить

Nр = Euмρрn3dм5 = 6,53·994·2,13·0,635 = 5,88 кВт

Отже, питома потужність перемішування газорідинної системи

= = 0,191 кВт/м3 приблизно дорівнює розрахунковій і проектована мішалка забезпечить потрібну швидкість масообміну.

За значенням Nр вибираємо привід перемішувального пристрою. Розрахункова потужність на валу мішалки Nв , знайдена за рівнянням

Group 122Nр-г= 0,695 Nр0,9 практично не відрізняється від потужності Nр, оскільки під час перемішування малов’язких середовищ А1 = 1, а впливом допоміжних пристроїв на потужність можна знехтувати ( ∑А2 = 0). Номінальна потужність електродвигуна приводу з урахуванням ККД редуктора ( ƞ = 0,9) = = 6,534 кВт.

Вибираємо нормалізований вертикальний привід 5-75-18,8 МН 5855-66 з редуктором типу ВО-VI і електродвигуном 4A132S8Y3 потужністю 4 кВт.

Тепловий розрахунок. Для підтримання необхідної температури процесу ( t =35ºС) під час культивування мікроорганізмів потрібну відновити не тільки теплоту біохімічних процесів, й теплоту, що утворюється в результаті механічної енергії при перемішуванні з

питомою потужністю Nv =0,19 кВт/м3. За об’єму рідини Vр = 10,5 м3 теплове навантаження поверхні охолоджування

= ( 1,6 + 0,19) 10,5 = 18,8 кВт.

За вибраних параметрів охолодної води середній температурний напір

∆tср = = = 8,37ºС.

Для розрахунку поверхні охолоджування потрібно знати коефіцієнт теплопередачі К0 = ,

де – коефіцієнт теплопередачі від рідини, що переміщується від стінки апарата, Вт/ (м2·К);

– коефіцієнт теплопередачі від стінки апарата до охолодної води, Вт/ (м2·К);

=0,01 – товщина стінки апарата, м;

–теплопровідність стінки, Вт/ (м2·К) ( для нержавіючої сталі марки 12 х 18Н10Т = 17,5 ).

Коефіцієнт розраховуємо за рівнянням

Nu = C0ReмmPrqΨDΨHΨhΨbΨBΨzΨsΨl3ΨD3

Группа 121З урахуванням відхилення проектованого апарата від дослідженої типової конструкції по ГDГН ( впливом відхилення ГВ нехтуємо ) :

Nu = 0,76 Reм0,67Pr0,33 ΨD ΨH =

= 0,76 Pr0,33=

= 0,76 4,650,33= 6446,9

За значеннями Nu визначаємо = = 1439,2 Вт/(м2 · К).

Для розрахунку температуру стінки умовно взято середньою між температурою середовища, що переміщується, і охолодною водою ( tст = 27ºС). Охолодна вода протікає спіральним каналом прямокутного перерізу ( nстхbсп= 0,25 х 0,08м ), площа якого f =0,02 м2, а еквівалентний діаметр = =0,0536 м.

Витрату охолодної води обчислюємо з рівняння теплового балансу

= = 0,563 кг/с,

швидкість руху води в каналі = = 0,07527 м/с

За такої швидкості число Рейнольдса

Re =WBdекв/vв= 0,07527·0,0536*997/0,0008743 =4596,3

Режим руху турбулентний, і для розрахунку можна використовувати критеріальне рівняння

Nu = 0,021 Re0,8Pr0,4( Pr/Prст)0,25Х,

де Х - коефіцієнт, що враховує кривизну спіралі;

= 1 + 3,54 = 1,08

Взявши число Prст.= 5,12 при tст = 30ºС, визначаємо критерій Нюссельта Nu = 0,021*4596,30,8·5,740,4(5,74/5,12)0,25·1,08 = 37

а потім коефіцієнт = =418,8 Вт/(м2·К).

Після цього визначаємо коефіцієнт теплопередачі К0

= К0 = = 280,9 Вт/(м2·К).

З урахуванням забруднення поверхні ( φн = 0,9) коефіцієнт теплопередачі

К = К0 φн = 280,9 ·0,9 = 252,9 Вт/(м2·К).

Группа 1Поверхня охолоджування = = 8,26м2

і розміститься на висоті = =1,09 м, тобто на бічній поверхні апарата в його робочій зоні.

На основі отриманих розрахункових даних проектуємо апарат. Більшість вузлів апарата нормалізовано і їхню конструкцію описано в довідковій літературі. Корпус апарата виконуємо за ГОСТ 26-01-1246-75.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]