
- •550200 «Автоматизация и управление»
- •1. Рабочая учебная программа по дисциплине «Технические измерения и приборы»
- •1.1. Компетенции обучающегося, формируемые в результате освоения дисциплины
- •1.2. Содержание дисциплины
- •1.2.1. Основные разделы дисциплины
- •Распределение часов по самостоятельной работе студентов (2 курс)
- •Распределение часов по самостоятельной работе студентов (3 курс)
- •Распределение часов по самостоятельной работе студентов (4 курс)
- •Тематический план лекций (2/3 с/4 курс)
- •Тематический план лекций (3 очн. Сокр. 220301/4 очн. Сокр. 230102 курс)
- •Тематический план лабораторных занятий (2, 3 с, 3 очн., 4, 4 очн. Курс)
- •2.1. Задания и методические рекомендации по проведению лабораторных работ (Лабораторный практикум)
- •Список литературы
- •Лабораторная работа №2 «Разработка учебных систем сбора данных для тестирования низкочастотных модулей бытовой радиоаппаратуры»
- •Оборудование и документация
- •Теоретические сведения
- •Список литературы
- •2.2. Задания и методические указания по выполнению курсовой работы
- •1. Введение.
- •2. Структура и функции средств измерений.
- •В данном разделе необходимо представить краткое резюме по разделам 2, 3 и 4. Рекомендуемый объем курсовой работы должен составить не менее 20–25 страниц печатного текста через 1,5 интервала.
- •2.4. Перечень основной и дополнительной литературы
- •Основная литература
- •Дополнительная литература
- •Нормативно-техническая документация
- •2.5. Перечень средств, методов обучения и способов учебной деятельности, применение которых наиболее эффективно для освоения тем дисциплины
- •2.6. Требования к уровню освоения программы и формы текущего и промежуточного контроля знаний (зачет)
- •3. Учебно-практическое пособие введение
- •Глава 1. Измерения и измерительные средства
- •1.1. Общие сведения об измерениях и измерительных средствах
- •1.2. Метрологические характеристики приборов
- •Глава 2. Датчики и их характеристики
- •2.1. Общие требования к датчикам
- •2.2. Погрешность и точность
- •2.3. Динамические характеристики датчиков
- •2.4. Статические характеристики датчиков
- •2.5. Влияние нелинейности
- •2.6. Характеристики импедансов
- •2.7. Подбор входных и выходных импедансов
- •Глава 3. Виды датчиков
- •3.1. Бинарные и цифровые датчики
- •3.2. Датчики положения
- •3.3. Пороговые датчики
- •3.4. Индикаторы уровня
- •3.5. Цифровые и информационно-цифровые датчики
- •3.6. Датчики положения вала
- •3.7. Аналоговые датчики
- •3.8. Датчики движения
- •Глава 4. Приборы для обработки сигналов
- •4.1. Ввод аналоговых сигналов в компьютер
- •4.2. Мультиплексоры
- •4.3. Цифро-аналоговые преобразователи сигналов
- •4.4. Аналого-цифровые преобразователи сигналов
- •Глава 5. Приборы для управления технологическими
- •5.1. Современные средства управления и автоматизации
- •5.2. Платформа автоматизации tsx premium
- •5.3. Tsx micro - программно-аппаратная платформа
- •5.4. Серия плк Modicon tsx Momentum
- •5.5. Серия программируемых интеллектуальных реле Zelio Logic
- •Описание и характеристики
- •Варианты схем для использования дискретных и аналоговых входов интеллектуальных реле Zelio Logic
- •5.6. Преобразователи частоты
- •5.7. Диалоговые панели оператора в качестве одного из эффективных средств человеко-машинного интерфейса компания Schneider Electric разработала серию диалоговых панелей оператора Magelis.
- •4. Электронное учебно-методическое обеспечение дисциплины
- •5. Материалы, устанавливающие содержание и порядок проведения текущего и промежуточного контроля знаний (вопросы для самопроверки, зачетные вопросы, тестовые задания)
- •5.1. Вопросы для самопроверки
- •5.2. Зачетные вопросы
- •5.3. Тестовые задания
- •196. Основными функциями преобразователей частоты Altivar являются: пуск, останов.
- •7. Инновационные методы обучения (исследовательские методы, тренинговые формы)
- •7.1. Исследовательские методы
- •7.2. Тренинги и активные формы обучения
3.6. Датчики положения вала
Датчики положения вала или кодеры поворота (shaft encoders) – это цифровые датчики для измерения угла поворота и угловой скорости. Они применяются во всех системах, где нужна точная информация о параметрах вращательного движения, – например, станки, роботы, сервосистемы и электропривод. Существуют датчики относительного (incremental) и абсолютного (absolute) типов.
Датчик относительного типа состоит из светодетектора или магнитного датчика, например геркона, который генерирует последовательность импульсов при вращении объекта; поворот на 360° соответствует одному или более импульсам. Затем последовательность импульсов обрабатывается и преобразуется в угол поворота и угловую скорость объекта.
Датчик абсолютного типа выдает угол поворота объекта в двоичном коде. Оптический датчик состоит из диска с прорезями и светонепроницаемыми участками, причем каждая прорезь уникальна и соответствует определенному углу поворота. Источник света освещает одну сторону диска, а на другой стороне блок датчиков фиксирует световой шаблон (т. е. через какие прорези свет проходит, а через какие – нет), которому соответствует цифровое значение угла поворота. Кодирование обычно осуществляется на основе модифицированного двоичного алгоритма, чтобы минимизировать ошибки смещения фотоэлектрических датчиков относительно прорезей в диске. Эта простая технология обеспечивает высокие разрешение (которое определяется числом прорезей на градус углового смещения или на оборот диска) и точность, а также хорошую помехоустойчивость при передаче сигналов, поскольку не требует аналого-цифрового преобразования.
3.7. Аналоговые датчики
Выходной сигнал датчика подается на вход обрабатывающего устройства, например на входной порт компьютера. Поскольку характеристики выходного сигнала датчика и последующего каскада довольно часто отличаются друг от друга, то для передачи сигнала между ними должна использоваться некоторая согласующая цепь. Термин «согласующая цепь» (conditioning circuitry) является довольно общим и может обозначать любой набор электронных компонентов между измерительной головкой датчика и обрабатывающим устройством. Нельзя точно определить границу между электроникой измерительного преобразователя и последующими согласующими цепями – каждый раз она может трактоваться по-своему.
Большинство датчиков с преобразователем, применяемых в системах управления, генерируют аналоговый сигнал. Как правило, при управлении измеряются следующие физические величины:
- электрические и магнитные характеристики;
- параметры движения;
- сила, момент и давление;
- температура;
- уровень заполнения емкости;
- расход;
- плотность, вязкость и консистенция;
- концентрация (газа, жидкости, растворенных и взвешенных веществ);
- химическая или биохимическая активность.
Ниже представлен краткий обзор аналоговых датчиков, обычно используемых в системах управления. Измерение электрических величин – тока, напряжения, сопротивления, магнитного поля, излучения и мощности – краеугольный камень измерительных технологий. Для большинства типов измерений серийно выпускаются измерительные головки, датчики, включающие согласующие цепи и даже интегрированные устройства со встроенными аналогово-цифровыми преобразователями и средствами передачи данных.