- •History of Biophysics
- •Viruses possess only a portion of the ______________ of organisms.
- •Characteristics of Atmospheric Turbulence
- •In adult insects, the wings are solid ______________ the veins.
- •Complexities of Animal Energetics
- •Plants and Plant Communities
- •Nature and Subject of Biophysics
- •Molecular Structure of Biological Systems Part 1
- •Molecular Structure of Biological Systems Part 2
- •Energy transfer by charge carriers
- •In effect, selection is operating to prevent change away from this middle range of ______________.
- •Photosynthesis as Process of Energy Transfer and Energy Transformation
- •Thermodynamic Probability and Entropy
- •In atp the reactive group ______________ to the end of the amp phosphate group is not another nucleotide but rather a chain of two additional phosphate groups.
- •The Information Content of a Nucleic Acid
- •Biological Structures: General Aspects
- •Thermal Molecular Movement
- •In the pns, both myelinated and unmyelinated axons are bundled together, much like ______________ in a cable, to form nerves.
- •Models, Heterogeneity, and Scale
- •The Water Structure, Effects of Hydration
- •In a human, if the body temperature exceeds the set point of 37°c, sensors in a part of the brain detect this ______________.
- •Water Potential and Water Content
- •Water Potentials in Organisms and their Surroundings
- •Structure Formation of Biomacromolecules
- •Self Assembly and the Molecular Structure of Membranes
- •Mechanical Properties of Biological Membranes
- •Systems, Parameters and State Functions
- •In thermodynamics, systems are classified as follows according to the nature of their boundary against their environment:
- •Potential Energy Contour Tracing
- •Entropy and Stability
- •Pauli Exclusion Principle
- •Строение атомов и принцип Паули
- •Electronegativity and Strong Bonds
- •Электроотрицательность
- •Internal Energy
- •Внутренняя энергия
- •Bond Energies
- •Энергия связи
- •Water, Acids, Bases and Aqueous Reactions
- •Стохастические модели взаимодействия
- •Рентгеноструктурный анализ
- •Nuclear Magnetic Resonance
- •Ядерный магнитный резонанс
- •Scanning Tunnelling Microscopy
- •Принцип действия сканирующего туннельного микроскопа
- •Patch Clamping
- •Proteins
- •Nucleic acids
- •Дифракция рентгеновских лучей
- •Photo- and chemo-bioenergetics
- •Biological systems
- •If all relevant protein carriers are in use, increases in the ______________ do not increase the transport rate.
- •Neurobiophysics
- •Распространение нервного импульса
- •Nerve Cells
- •Аксон и нервный импульс
- •Myelinated Neurons
- •Signal reception
- •Time-resolved Crystallography
- •Biological Polymers
- •Nucleic Acids
- •Нуклеиновые кислоты
- •Nucleic Acid Conformation: dna
- •Proteins
- •Protein Folding
- •In terrestrial vertebrates, the forebrain plays a far more ______________ in neural processing than it does in fishes.
- •Фолдинг белка
- •Respiration
- •Bacterial Motion
- •Muscular Movement
- •In some neurons specialized for rapid signal conduction, the axon is encased in a myelin ______________ that is interrupted at intervals.
- •Energy Exchange
- •In addition, the interactions that occur between members of a population also depend critically on a population’s size and ______________.
- •Continuity in the Biosphere
- •Water Vapor and Other Gases
- •Газы атмосферы
- •Covalent Bonds, Molecular Orbitals
- •Coordinative Bonds, Metallo-Organic Complexes
- •In dry years, when only large, tough seeds are available, the ______________ beak size increases.
- •Типы металлоорганических соединений
- •Hydrogen Bond
- •Mechanisms of Molecular Energy Transfer
- •In general, the following mechanisms of intermolecular energy transfer must be considered: energy transfer by radiation, energy transfer by inductive resonance, energy transfer by charged carriers
Viruses possess only a portion of the ______________ of organisms.
Botanists have always been ______________ that species can often experience substantial amounts of hybridization.
Trichomes play an important role in keeping the leaf surface cool and in reducing the rate of ______________.
Characteristics of Atmospheric Turbulence
As was previously mentioned, one of the obvious characteristics of wind is its variability. We are aware of random temporal variations of the wind through fluttering of flags and leaves, variations in the force of wind on us, and other common experiences. Spatial variations are obvious when one looks at a field of "waving grain" or at "cat's paws" on a lake. We are also aware that the range of variability is large. We see very small scale fluctuations in "heat waves" on hot summer days and feel or hear the effects of very large scale fluctuations as wind gusts which blow dust or shake the house. All of these characteristics of wind with which we are intimately acquainted are characteristics of turbulent flow. Except for a thin layer of air close to surfaces, the atmosphere is essentially always turbulent, or, in other words, characterized by random fluctuations in wind speed and direction caused by a swirling or eddy motion of the air. These swirls or eddies are generated in two ways. As wind moves over natural surfaces, the friction with the surface generates turbulence. This is called mechanical turbulence. Turbulence is also generated when air is heated at a surface and moves upward due to buoyancy. This is called thermal or convective turbulence. The size of the eddies produced by these two processes is different. The fluctuations from mechanical turbulence tend to be smaller and more rapid than thermal fluctuations. A striking demonstration of these types of turbulence can be seen by watching the plume from a smokestack on a hot day. The plume is called a looping plume because, in addition to the small scale mechanical turbulence that tears the plume apart and spreads it with distance, the thermal updrafts and downdrafts cause the entire plume to be transported upward or downward.
Large eddies, which are produced either mechanically or thermally, are unstable and decay into smaller and smaller eddies until they are so small that viscous damping by molecular interactions within the eddies finally turns their energy into heat. The size of the smallest eddies produced by mechanical and convective motion (rather than breakdown of larger eddies) is called the outer scale of turbulence. The eddy size at which significant molecular interaction (viscous dissipation) begins is called the inner scale of turbulence. The outer scale is generally taken to be a few meters and the inner scale a few millimeters.
Define the following words
Random, temporal, to flutter, eddy, updraft, plume, buoyancy.
Complete the sentences
As was previously mentioned,…
Spatial variations are obvious…
All of these characteristics of wind with which we are intimately acquainted…
Except for a thin layer of air…
As wind moves over natural surfaces,…
Turbulence is also generated when…
A striking demonstration of these types of turbulence can be seen when…
The plume is called a looping plume because…
Put the following words and word combinations into the gaps
obvious / variability / random / fluttering / scale / except for / frictional / due to / dissipation
Animal and wind dispersal of pollen increases genetic ______________ in a species.
______________ molecular motion results in a net movement of molecules to regions of lower concentration.
Acting through the control of motor neurons, the hypothalamus responds by promoting the ______________ of heat through sweating, dilation of blood vessels in the skin, and other mechanisms.
Phase change can be morphologically ______________ or very subtle.
The ______________ of an eyelash, the flight of an eagle, and the awkward crawling of a baby all depend on cytoskeletal movements within muscle cells.
The physical restraints to movement—gravity and ______________ drag—are the same in every environment, differing only in degree.
