Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Митюк_пособие.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
3.41 Mб
Скачать

§6. Первое начало термодинамики.

Первое начало термодинамики непосредственно связано с законом сохранения энергии. Оно позволяет рассчитывать баланс энергии при протекании различных процессов, в том числе и химических реакций.

Из закона сохранения энергии следует:

Q = ∆U + W

Полученное выражение для закрытой системы может быть прочитано следующим образом: теплота, подведенная к системе, расходуется только на изменение ее внутренней энергии и совершение работы.

Приведенное выше утверждение, связанное с уравнениями (I, 3) и (I, 5), служит формулировкой первого начала термодинамики (в сочетании с уравнением (I, 2), дающим количественное определение внутренней энергии).

Первое начало термодинамики является количественной формулировкой закона сохранения энергии в применении к процессам, связанным с превращениями теплоты и работы.

Еще одна формулировка первого начала термодинамики может быть получена из выражения (I, 2а). В изолированной системе Q = 0 и W = 0, тогда и dU = 0; следовательно, при любых процессах, протекающих в изолированной системе:

(I,6)

т. е. внутренняя энергия изолированной системы постоянна. Эта формулировка первого закона термодинамики есть примененное к конкретным условиям и конечным системам количественное выражение общего закона сохранения энергии, в соответствии с которым энергия не создается и не исчезает.

Следует отметить, что первый закон термодинамики не дает возможности найти полное значение внутренней энергии системы в каком-либо состоянии, так как уравнения, выражающие первый закон, приводят к вычислению только изменения энергии системы в различных процессах. Точно так же нельзя непосредственно измерить изменения внутренней энергии в макроскопических процессах; можно лишь вычислить эти изменения с помощью уравнения (I, 2б), учитывая измеримые величины - теплоту и работу данного процесса.

Отметим, что теплота и работа (каждая в отдельности) не обладают свойством функции состояния, выражаемым уравнением (I, 3) или (I, 5) и присущим внутренней энергии. Теплота и работа процесса, переводящего систему из состояния 1 в состояние 2, зависят в общем случае от пути процесса и величины δQ и δW не являются дифференциалами функции состояния, а суть просто бесконечно малые величины, которые мы будем называть элементарной теплотой и элементарной работой.

Таким образом, дифференциал внутренней энергии dU имеет иные математические свойства, чем элементарные теплота Q и работа W. Это имеет существенное значение при построении системы термодинамики.

§ 7. Уравнения состояния.

Многие свойства системы, находящейся в равновесии, и составляющих ее фаз являются взаимозависимыми. Изменение одного из них вызывает изменение других. Количественные функциональные зависимости между свойствами системы (фазы) могут быть отражены уравнениями различного вида.

Из таких уравнений наибольшее значение имеет уравнение состояния фазы, связывающее в интегральной форме давление, температуру, плотность (или объем), состав и другие свойства каждой фазы системы, находящейся в равновесии.

Уравнение состояния тесно связано с термодинамическими уравнениями системы и ее однородных частей (фаз), но не может быть в конкретной форме выведено из основных уравнений термодинамики и должно быть найдено опытным путем или получено методами статистической физики, исходя из молекулярных параметров (т. е. величин, характеризующих строение и свойства отдельных молекул). Простейшими уравнениями состояния являются уравнения для газов при малых давлениях: уравнение Клапейрона — Менделеева, уравнение Ван-дер-Ваальса и др.

Наличие уравнений состояния и других уравнений, связывающих различные свойства фазы, приводит к тому, что для однозначной характеристики состояния системы оказывается достаточным знание только нескольких, немногих независимых свойств. Эти свойства называются независимыми переменными или параметрами состояния системы. Остальные свойства являются функциями параметров состояния и определяются однозначно, если заданы значения последних. При этом для многих задач не имеет значения, известны ли нам конкретные уравнения состояния исследуемых фаз; важно только, что соответствующие зависимости всегда реально существуют.

Таким образом, состояние системы определяется независимыми переменными (параметрами состояния), число которых зависит от характера конкретной системы, а выбор их в принципе произволен и связан с соображениями целесообразности. Для определения состояния простейших систем - однородных и постоянных во времени по массе и составу (состоящих из одной фазы и не изменяющихся химически) - достаточно знать две независимые переменные из числа трех (объем V, давление P и температура T). В более сложных системах в число независимых переменных могут входить концентрации, электрический заряд, электростатический потенциал, напряженность магнитного поля и другие.