
- •Введение
- •Физическая химия § 1. Предмет физической химии. Ее значение
- •§ 2. Краткий очерк истории развития физической химии
- •§ 3. Разделы физической химии. Методы исследования
- •Глава I первый закон термодинамики § 1. Энергия. Закон сохранения и превращения энергии
- •§ 2. Предмет, метод и границы термодинамики
- •§ 3. Теплота и работа
- •§ 4. Эквивалентность теплоты и работы
- •§ 5. Внутренняя энергия.
- •§6. Первое начало термодинамики.
- •§ 7. Уравнения состояния.
- •§ 8. Калорические коэффициенты
- •§ 9. Работа различных процессов
- •§ 10. Теплоемкость. Вычисление теплоты различных процессов
- •§ 11. Энтальпия
- •§ 12. Применение первого закона термодинамики к идеальным газам
- •Глава II. Второй закон термодинамики
- •§ 1. Самопроизвольные и несамопроизвольные процессы
- •§ 2. Второй закон термодинамики
- •§ 3. Методы расчета энтропии
- •§ 4. Постулат Планка. Абсолютные значения энтропии
- •Глава III энергия гельмгольца. Энергия гиббса. Приложения второго закона термодинамики
- •§ 1. Энергия Гельмгольца
- •§ 2. Энергия Гиббса
- •§ 3. Фазовые переходы. Уравнение Клапейрона—Клаузиуса
- •§ 4. Фазовые переходы первого рода. Плавление. Испарение
- •§ 5. Зависимость давления насыщенного пара от температуры
- •Глава IV термодинамика растворов. Газовые смеси (растворы)
- •§ 1. Растворы (определение). Концентрация.
- •§ 2. О молекулярной структуре растворов
- •§ 3. О теориях растворов
- •Глава V. Равновесие: жидкий раствор — насыщенный пар
- •§ 1. Давление насыщенного пара бинарных жидких растворов
- •§ 2. Закон Рауля. Идеальные растворы. Предельно разбавленные растворы
- •§ 3. Реальные растворы. Положительные и отрицательные отклонения от закона Рауля
- •§ 4. Диаграммы равновесия жидкость - пар в бинарных системах. Первый закон Коновалова. Фракционная перегонка
- •§ 5. Температура кипения растворов нелетучих веществ. Эбуллиоскопия Температура замерзания растворов нелетучих веществ. Криоскопия
- •§ 6. Второй закон Коновалова. Азеотропные растворы
- •Глава VI равновесие жидких растворов с газами. Некоторые классы растворов
- •§ 1. Растворимость газов в жидкостях
- •§ 2. Влияние давления на растворимость газов. Закон Генри
- •§ 3. Зависимость растворимости газов от температуры
- •§ 4. Влияние третьего компонента на растворимость газов
- •§ 5. Совместная растворимость нескольких газов
- •Глава VII. Предмет коллоидной химии
- •§1. Определение предмета коллоидной химии
- •§2. Признаки объектов коллоидной химии
- •§3. Значение коллоидной химии
- •Глава VIII. Поверхностные явления и адсорбция
- •§1. Поверхностное натяжение.
- •§2. Когезионные и поверхностные силы
- •§3. Зависимость энергетических параметров поверхности от температуры
- •5. Самопроизвольное уменьшение поверхностной энергии и формирование поверхностного слоя
- •Глава IX. Адсорбция и поверхностное натяжение
- •§1. Виды адсорбции, ее количественные характеристики и их связь с параметрами системы
- •§2. Фундаментальное адсорбционное уравнение Гиббса и примеры его применения
- •§3. Поверхностная активность. Поверхностно-активные и инактивные вещества
- •§4. Мономолекулярная адсорбция. Изотерма адсорбции Ленгмюра
- •§5. Теория полимолекулярной адсорбции бэт
- •§6. Изотермы адсорбции и поверхностного натяжения растворов пав.
- •§7. Классификация и общая характеристика поверхностно-активных веществ. Правило Дюкло – Траубе
- •§8. Хроматография. Основы метода.
- •Глава хi. Адгезия, смачивание и растекание жидкостей
- •§1. Адгезия и работа адгезии
- •§2. Смачивание и краевой угол. Закон Юнга
- •§3. Связь работы адгезии с краевым углом
- •§4. Флотация
- •§5. Моющее действие пав. Роль пав в повышении нефтеотдачи пластов
- •Глава XII. Капиллярные явления
- •§1. Влияние кривизны поверхности на внутреннее давление. Закон Лапласа
- •§2. Капиллярные явления. Формула Жюрена
- •§3. Роль капиллярных явлений при вытеснении нефти водой из пористых сред
- •Глава XIII. Дисперсные системы
- •§1. Классификация дисперсных систем
- •§2. Два метода получения дисперсных систем – диспергирование и конденсация
- •§3.Молекулярно-кинетические свойства дисперсных систем
- •§4. Устойчивость дисперсных систем
- •§5. Седиментация
- •§6. Седиментационный анализ дисперсности
- •§7. Диффузионно-седиментационное равновесие.
- •§8. Агрегативная устойчивость дисперсных систем
- •§9. Стабилизация и разрушение эмульсий
- •Дисперсные системы с жидкой дисперсной фазой и жидкой дисперсионной средой называются эмульсиями.
- •Глава XIV. Структурно-механические свойства дисперсных систем
- •§1. Основные понятия и идеальные законы реологии
- •§2. Вязкость
- •§3. Моделирование реологических свойств тел
- •§4. Классификация дисперсных систем по структурно-механическим свойствам
- •§5. Реологические свойства дисперсных систем
- •Д. Ю. Митюк, в. И. Фролов физическая и коллоидная химия
- •117917, Москва, Ленинский проспект, д. 65
Глава XIII. Дисперсные системы
§1. Классификация дисперсных систем
Дисперсные системы, рассматриваемые в коллоидной химии, гетерогенны, поэтому состоят как минимум из двух фаз. Одна из них является сплошной и называется дисперсионной средой. Другая фаза раздроблена и распределена в первой; ее называют дисперсной фазой.
Наиболее общая классификация дисперсных систем основана на определении агрегатного состояния дисперсной фазы и дисперсионной среды. Сочетания трех агрегатных состояний (твердое, жидкое и газообразное) позволяют выделить девять типов дисперсных систем (табл.7). Для краткости их условно обозначают дробью, числитель которой указывает на агрегатное состояние дисперсной фазы, а знаменатель - дисперсионной среды, например обозначение Т/Ж показывает, что система состоит из твердой дисперсной фазы и жидкой дисперсионной среды (твердое в жидкости).
Таблица 7. Классификация дисперсных систем по агрегатному состоянию фаз
Дисперсионная среда |
Дисперсная фаза |
Условное обозначение системы |
Название системы и примеры |
Твердая |
Твердая |
Т/Т |
Твердые гетерогенные системы: минералы, сплавы, ситаллы, бетон, композиционные материалы |
|
Жидкая |
Ж/Т |
Капиллярные системы: жидкость в пористых телах, адсорбентах; влажные почвы, грунты |
|
Газообразная |
Г/Т |
Пористые тела: адсорбенты и катализаторы |
Жидкая |
Твердая |
Т/Ж |
Суспензии и золи: промышленные суспензии, пульпы, взвеси, пасты, илы |
|
Жидкая |
Ж/Ж |
Эмульсии: природная нефть, кремы, молоко |
|
Газообразная |
Г/Ж |
Газовые эмульсии и пены |
Газообразная
|
Твердая |
Т/Г |
Аэрозоли: пыли, дымы. Порошки |
Жидкая |
Ж/Г |
Аэрозоли: туманы, в том числе промышленные облака |
|
Газообразная |
Г/Г |
Коллоидная система не образуется |
Одно из девяти сочетаний Г/Г не может соответствовать коллоидной системе, так как газы в обычных условиях при любых концентрациях дают истинные растворы (при очень высоких давлениях некоторые газовые системы образуют гетерогенные системы). Однако газовые смеси могут проявлять отдельные свойства гетерогенно-дисперсных систем благодаря непрерывным флуктуациям плотности и концентрации, вызывающим неоднородности в системе. Рассматривая жидкие растворы с молекулярной степенью дисперсности, к гетерогенно-дисперсным системам можно отнести растворы полимеров. Размеры макромолекул могут превышать размеры обычных коллоидных частиц. Эти системы обладают многими свойствами, характерными для типичных гетерогенно-дисперсных систем. Они как бы связывают в единое целое все дисперсные системы и указывают на непрерывность перехода от истинных молекулярных растворов к гетерогенным дисперсным системам.
Все дисперсные системы также можно разделить на два класса по кинетическим свойствам дисперсной фазы: свободнодисперсные системы, в которых дисперсная фаза подвижна, и связнодисперсные системы - системы с твердообразной дисперсионной средой, в которой частицы дисперсной фазы не могут свободно перемещаться.
И еще эти системы классифицируют по степени дисперсности. Свободнодисперсные системы подразделяют на ультрамикрогетерогенные, размер частиц которых лежит в пределах от 10-9 до 10-7 м (от 1 до 100 нм), микрогетерогенные с размером частиц от 10-7 до 10-5 м (от 0,1 до 10 мкм) и грубодисперсные с частицами, размеры которых превышают 10-5 м.
Ультрамикрогетерогенные системы часто называют истинно коллоидными или просто коллоидными, так как раньше только такие системы считались объектом коллоидной химии. Такие частицы обладают определенным агрегатным состоянием.
С ростом числа молекул в частице она постепенно приобретает все свойства фазы. В современной литературе малоконцентрированные свободнодисперсные ультрамикрогетерогенные системы чаще называют «золями» (нем. Sole от лат. solutio - раствор). Среди них различают аэрозоли - золи с газообразной дисперсионной средой; лиозоли - золи с жидкой дисперсионной средой (греч. lios - жидкость). В зависимости от природы среды лиозоли называют гидрозолями (вода), органозолями (органическая среда) или, более конкретно, алкозолями (спирты) и т. д.
Cвязнодисперсные (структурированные) системы с жидкой дисперсионной средой называют «гелями».
К микрогетерогенным системам относят суспензии (Т/Ж), эмульсии (Ж/Ж), пены (Г/Ж), порошки (Т/Г). Эти системы имеют большое значение в промышленности. Из грубодисперсных систем наиболее распространены системы Т/Г (песок, щебень и др.).
И, наконец, дисперсные системы классифицируют по интенсивности межмолекулярных взаимодействий на границе раздела фаз.
Различают «лиофильные» коллоидные системы, которые характеризуются высокой степенью родственности дисперсной фазы и дисперсионной среды и их сильным взаимодействием, чему соответствуют очень низкие значения межфазного натяжения.
При высоких значениях межфазного натяжения образуются термодинамически неравновесные (неустойчивые) «лиофобные» дисперсные системы. Это обусловлено существенным различием граничащих фаз по составу, свойствам и их слабым взаимодействием.