
- •Введение
- •Физическая химия § 1. Предмет физической химии. Ее значение
- •§ 2. Краткий очерк истории развития физической химии
- •§ 3. Разделы физической химии. Методы исследования
- •Глава I первый закон термодинамики § 1. Энергия. Закон сохранения и превращения энергии
- •§ 2. Предмет, метод и границы термодинамики
- •§ 3. Теплота и работа
- •§ 4. Эквивалентность теплоты и работы
- •§ 5. Внутренняя энергия.
- •§6. Первое начало термодинамики.
- •§ 7. Уравнения состояния.
- •§ 8. Калорические коэффициенты
- •§ 9. Работа различных процессов
- •§ 10. Теплоемкость. Вычисление теплоты различных процессов
- •§ 11. Энтальпия
- •§ 12. Применение первого закона термодинамики к идеальным газам
- •Глава II. Второй закон термодинамики
- •§ 1. Самопроизвольные и несамопроизвольные процессы
- •§ 2. Второй закон термодинамики
- •§ 3. Методы расчета энтропии
- •§ 4. Постулат Планка. Абсолютные значения энтропии
- •Глава III энергия гельмгольца. Энергия гиббса. Приложения второго закона термодинамики
- •§ 1. Энергия Гельмгольца
- •§ 2. Энергия Гиббса
- •§ 3. Фазовые переходы. Уравнение Клапейрона—Клаузиуса
- •§ 4. Фазовые переходы первого рода. Плавление. Испарение
- •§ 5. Зависимость давления насыщенного пара от температуры
- •Глава IV термодинамика растворов. Газовые смеси (растворы)
- •§ 1. Растворы (определение). Концентрация.
- •§ 2. О молекулярной структуре растворов
- •§ 3. О теориях растворов
- •Глава V. Равновесие: жидкий раствор — насыщенный пар
- •§ 1. Давление насыщенного пара бинарных жидких растворов
- •§ 2. Закон Рауля. Идеальные растворы. Предельно разбавленные растворы
- •§ 3. Реальные растворы. Положительные и отрицательные отклонения от закона Рауля
- •§ 4. Диаграммы равновесия жидкость - пар в бинарных системах. Первый закон Коновалова. Фракционная перегонка
- •§ 5. Температура кипения растворов нелетучих веществ. Эбуллиоскопия Температура замерзания растворов нелетучих веществ. Криоскопия
- •§ 6. Второй закон Коновалова. Азеотропные растворы
- •Глава VI равновесие жидких растворов с газами. Некоторые классы растворов
- •§ 1. Растворимость газов в жидкостях
- •§ 2. Влияние давления на растворимость газов. Закон Генри
- •§ 3. Зависимость растворимости газов от температуры
- •§ 4. Влияние третьего компонента на растворимость газов
- •§ 5. Совместная растворимость нескольких газов
- •Глава VII. Предмет коллоидной химии
- •§1. Определение предмета коллоидной химии
- •§2. Признаки объектов коллоидной химии
- •§3. Значение коллоидной химии
- •Глава VIII. Поверхностные явления и адсорбция
- •§1. Поверхностное натяжение.
- •§2. Когезионные и поверхностные силы
- •§3. Зависимость энергетических параметров поверхности от температуры
- •5. Самопроизвольное уменьшение поверхностной энергии и формирование поверхностного слоя
- •Глава IX. Адсорбция и поверхностное натяжение
- •§1. Виды адсорбции, ее количественные характеристики и их связь с параметрами системы
- •§2. Фундаментальное адсорбционное уравнение Гиббса и примеры его применения
- •§3. Поверхностная активность. Поверхностно-активные и инактивные вещества
- •§4. Мономолекулярная адсорбция. Изотерма адсорбции Ленгмюра
- •§5. Теория полимолекулярной адсорбции бэт
- •§6. Изотермы адсорбции и поверхностного натяжения растворов пав.
- •§7. Классификация и общая характеристика поверхностно-активных веществ. Правило Дюкло – Траубе
- •§8. Хроматография. Основы метода.
- •Глава хi. Адгезия, смачивание и растекание жидкостей
- •§1. Адгезия и работа адгезии
- •§2. Смачивание и краевой угол. Закон Юнга
- •§3. Связь работы адгезии с краевым углом
- •§4. Флотация
- •§5. Моющее действие пав. Роль пав в повышении нефтеотдачи пластов
- •Глава XII. Капиллярные явления
- •§1. Влияние кривизны поверхности на внутреннее давление. Закон Лапласа
- •§2. Капиллярные явления. Формула Жюрена
- •§3. Роль капиллярных явлений при вытеснении нефти водой из пористых сред
- •Глава XIII. Дисперсные системы
- •§1. Классификация дисперсных систем
- •§2. Два метода получения дисперсных систем – диспергирование и конденсация
- •§3.Молекулярно-кинетические свойства дисперсных систем
- •§4. Устойчивость дисперсных систем
- •§5. Седиментация
- •§6. Седиментационный анализ дисперсности
- •§7. Диффузионно-седиментационное равновесие.
- •§8. Агрегативная устойчивость дисперсных систем
- •§9. Стабилизация и разрушение эмульсий
- •Дисперсные системы с жидкой дисперсной фазой и жидкой дисперсионной средой называются эмульсиями.
- •Глава XIV. Структурно-механические свойства дисперсных систем
- •§1. Основные понятия и идеальные законы реологии
- •§2. Вязкость
- •§3. Моделирование реологических свойств тел
- •§4. Классификация дисперсных систем по структурно-механическим свойствам
- •§5. Реологические свойства дисперсных систем
- •Д. Ю. Митюк, в. И. Фролов физическая и коллоидная химия
- •117917, Москва, Ленинский проспект, д. 65
§2. Капиллярные явления. Формула Жюрена
Капиллярные явления наблюдаются, когда жидкость проникает в трубки с очень узкими каналами (капилляры, капиллярно-пористые тела), у которых расстояние между стенками соизмеримо с радиусом кривизны поверхности жидкости. Кривизна возникает в результате взаимодействия жидкости со стенками сосуда (адгезия, смачивание). Специфика поведения жидкости в капилляре зависит от того, смачивает или не смачивает жидкость его стенки, точнее, от значения краевого угла смачивания.
Рассмотрим положение уровней жидкости в двух капиллярах, один из которых имеет лиофильную поверхность и поэтому стенки его смачиваются, у другого внутренняя поверхность лиофобизирована и не смачивается (рис.30).
В первом капилляре (см. рис.30, а) поверхность жидкости имеет отрицательную кривизну, поэтому дополнительное давление Лапласа (давление направлено к центру кривизны) поднимает ее в капилляре. Кривизна поверхности жидкости во втором капилляре (см. рис.30, б) положительна, дополнительное давление направлено внутрь жидкости, в результате жидкость в капилляре опускается (отрицательное капиллярное поднятие). При равновесии лапласовское давление равно гидростатическому давлению столба жидкости высотой H:
(XII.3)
где - плотность жидкости; 0 - плотность газовой фазы; g - ускорение свободного падения; r - радиус мениска.
Рис.30. Капиллярное поднятие жидкости:
a - cos > 0: б - cos < 0: в - связь радиуса кривизны мениска r с радиусом капилляра r0.
Чтобы высоту капиллярного поднятия связать с характеристикой смачивания, радиус мениска необходимо выразить через угол смачивания и радиус капилляра r0. На рис.30, в показан (в увеличенном виде) мениск жидкости в капилляре. Видно, что r0 = r cos , тогда высоту капиллярного поднятия можно представить в виде формулы Жюрена:
(XII.4)
При отсутствии смачивания > 90°, cos < 0, уровень жидкости в капилляре опускается на величину H. При полном смачивании = 0, cos = 1, в этом случае радиус мениска равен радиусу капилляра.
Краевой угол для воды и низших углеводородов на стенке стеклянного капилляра мал. Для большинства других жидкостей он меньше 10°. Расчет по уравнению (XII.4) показывает, что относительная погрешность, обусловленная приравниванием этого угла в стеклянном капилляре нулю, не превышает 1,5%. Измерение высоты капиллярного поднятия лежит в основе одного из наиболее точных методов определения поверхностного натяжения жидкостей.
Капиллярным поднятием жидкостей объясняется ряд известных явлений и процессов: пропитка бумаги и тканей обусловлена капиллярным поднятием жидкости в порах; водонепроницаемость тканей обеспечивается их гидрофобностью и как следствие - отрицательным капиллярным поднятием; подъем воды из почвы по стволам деревьев происходит благодаря волокнистому строению древесины; процессы кровообращения в кровеносных сосудах и т. д.
§3. Роль капиллярных явлений при вытеснении нефти водой из пористых сред
Поровое пространство нефтесодержащих пород представляет собой огромное скопление капиллярных каналов, в которых движутся несмешивающиеся жидкости, образующие мениски на границе раздела фаз. Этим обстоятельством обусловлено существенное влияние капиллярных явлений на процессы вытеснения нефти.
Если порода гидрофильна, то в области водонефтяного контакта давление, развиваемое менисками, способствует процессам капиллярного впитывания и перераспределения жидкостей.
Кроме того, капиллярные силы влияют на процессы диспергирования и коалесценции (слияния) частиц нефти и воды в пористой среде.
Интенсивность упомянутых капиллярных процессов зависит в той или иной степени от величины капиллярного давления.
Изменяя качества нагнетаемых в залежь вод, можно воздействовать на их поверхностное натяжение на границе с нефтью, смачивающие характеристики, а также вязкостные свойства. Это означает, что изменяя упомянутые свойства, мы прежде всего влияем на комплексный параметр – капиллярные свойства пластовой системы, т.е., на значение и знак капиллярного давления.
В гидрофобных пластах, где возникает противодействие вытеснению нефти водой, капиллярные силы вредны. Лучший результат можно получить, если нефть вытесняется водным раствором с низким значением межфазного натяжения.
Роль капиллярных сил в гидрофильных породах заключается в использовании эффекта впитывания воды в нефтенасыщенные блоки для существенного увеличения извлекаемых запасов нефти из трещиновато-пористых коллекторов.
Считается, что во всех случаях водные растворы, развивающие в пористой среде высокое капиллярное давление, более предпочтительны для заводнения нефтяных залежей.
Благоприятное влияние капиллярных процессов в зоне водонефтяного контакта на нефтеотдачу неоднородного пласта выражено в гораздо меньшей степени.
Изучение процессов вытеснения нефти водой с учетом капиллярных процессов и капиллярных характеристик пластовых систем позволяет определить влияние на нефтеотдачу как условий вытеснения, так и физико-химических свойств пластовых жидкостей и пород.