
- •Введение
- •Физическая химия § 1. Предмет физической химии. Ее значение
- •§ 2. Краткий очерк истории развития физической химии
- •§ 3. Разделы физической химии. Методы исследования
- •Глава I первый закон термодинамики § 1. Энергия. Закон сохранения и превращения энергии
- •§ 2. Предмет, метод и границы термодинамики
- •§ 3. Теплота и работа
- •§ 4. Эквивалентность теплоты и работы
- •§ 5. Внутренняя энергия.
- •§6. Первое начало термодинамики.
- •§ 7. Уравнения состояния.
- •§ 8. Калорические коэффициенты
- •§ 9. Работа различных процессов
- •§ 10. Теплоемкость. Вычисление теплоты различных процессов
- •§ 11. Энтальпия
- •§ 12. Применение первого закона термодинамики к идеальным газам
- •Глава II. Второй закон термодинамики
- •§ 1. Самопроизвольные и несамопроизвольные процессы
- •§ 2. Второй закон термодинамики
- •§ 3. Методы расчета энтропии
- •§ 4. Постулат Планка. Абсолютные значения энтропии
- •Глава III энергия гельмгольца. Энергия гиббса. Приложения второго закона термодинамики
- •§ 1. Энергия Гельмгольца
- •§ 2. Энергия Гиббса
- •§ 3. Фазовые переходы. Уравнение Клапейрона—Клаузиуса
- •§ 4. Фазовые переходы первого рода. Плавление. Испарение
- •§ 5. Зависимость давления насыщенного пара от температуры
- •Глава IV термодинамика растворов. Газовые смеси (растворы)
- •§ 1. Растворы (определение). Концентрация.
- •§ 2. О молекулярной структуре растворов
- •§ 3. О теориях растворов
- •Глава V. Равновесие: жидкий раствор — насыщенный пар
- •§ 1. Давление насыщенного пара бинарных жидких растворов
- •§ 2. Закон Рауля. Идеальные растворы. Предельно разбавленные растворы
- •§ 3. Реальные растворы. Положительные и отрицательные отклонения от закона Рауля
- •§ 4. Диаграммы равновесия жидкость - пар в бинарных системах. Первый закон Коновалова. Фракционная перегонка
- •§ 5. Температура кипения растворов нелетучих веществ. Эбуллиоскопия Температура замерзания растворов нелетучих веществ. Криоскопия
- •§ 6. Второй закон Коновалова. Азеотропные растворы
- •Глава VI равновесие жидких растворов с газами. Некоторые классы растворов
- •§ 1. Растворимость газов в жидкостях
- •§ 2. Влияние давления на растворимость газов. Закон Генри
- •§ 3. Зависимость растворимости газов от температуры
- •§ 4. Влияние третьего компонента на растворимость газов
- •§ 5. Совместная растворимость нескольких газов
- •Глава VII. Предмет коллоидной химии
- •§1. Определение предмета коллоидной химии
- •§2. Признаки объектов коллоидной химии
- •§3. Значение коллоидной химии
- •Глава VIII. Поверхностные явления и адсорбция
- •§1. Поверхностное натяжение.
- •§2. Когезионные и поверхностные силы
- •§3. Зависимость энергетических параметров поверхности от температуры
- •5. Самопроизвольное уменьшение поверхностной энергии и формирование поверхностного слоя
- •Глава IX. Адсорбция и поверхностное натяжение
- •§1. Виды адсорбции, ее количественные характеристики и их связь с параметрами системы
- •§2. Фундаментальное адсорбционное уравнение Гиббса и примеры его применения
- •§3. Поверхностная активность. Поверхностно-активные и инактивные вещества
- •§4. Мономолекулярная адсорбция. Изотерма адсорбции Ленгмюра
- •§5. Теория полимолекулярной адсорбции бэт
- •§6. Изотермы адсорбции и поверхностного натяжения растворов пав.
- •§7. Классификация и общая характеристика поверхностно-активных веществ. Правило Дюкло – Траубе
- •§8. Хроматография. Основы метода.
- •Глава хi. Адгезия, смачивание и растекание жидкостей
- •§1. Адгезия и работа адгезии
- •§2. Смачивание и краевой угол. Закон Юнга
- •§3. Связь работы адгезии с краевым углом
- •§4. Флотация
- •§5. Моющее действие пав. Роль пав в повышении нефтеотдачи пластов
- •Глава XII. Капиллярные явления
- •§1. Влияние кривизны поверхности на внутреннее давление. Закон Лапласа
- •§2. Капиллярные явления. Формула Жюрена
- •§3. Роль капиллярных явлений при вытеснении нефти водой из пористых сред
- •Глава XIII. Дисперсные системы
- •§1. Классификация дисперсных систем
- •§2. Два метода получения дисперсных систем – диспергирование и конденсация
- •§3.Молекулярно-кинетические свойства дисперсных систем
- •§4. Устойчивость дисперсных систем
- •§5. Седиментация
- •§6. Седиментационный анализ дисперсности
- •§7. Диффузионно-седиментационное равновесие.
- •§8. Агрегативная устойчивость дисперсных систем
- •§9. Стабилизация и разрушение эмульсий
- •Дисперсные системы с жидкой дисперсной фазой и жидкой дисперсионной средой называются эмульсиями.
- •Глава XIV. Структурно-механические свойства дисперсных систем
- •§1. Основные понятия и идеальные законы реологии
- •§2. Вязкость
- •§3. Моделирование реологических свойств тел
- •§4. Классификация дисперсных систем по структурно-механическим свойствам
- •§5. Реологические свойства дисперсных систем
- •Д. Ю. Митюк, в. И. Фролов физическая и коллоидная химия
- •117917, Москва, Ленинский проспект, д. 65
Глава II. Второй закон термодинамики
§ 1. Самопроизвольные и несамопроизвольные процессы
Из первого закона термодинамики и вытекающих из него закономерностей обмена энергией между телами при различных процессах нельзя сделать вывода о том, возможен ли, вообще говоря, данный процесс и в каком направлении он протекает.
Между тем реальные процессы протекают в определенном направлении и, как правило, не изменив условий, нельзя заставить процесс пойти в обратном направлении, “вернуться вспять”. Поэтому очень важной для науки и техники является возможность предвидеть направление того или иного процесса.
Реальные процессы являются неравновесными процессами.
Неравновесные процессы (непосредственный переход теплоты от тела с более высокой температурой к телу с более низкой температурой, превращение работы в теплоту при трении, смешение двух газов, взрыв гремучего газа и др.) протекают с конечной, иногда большой скоростью; при этом система, являющаяся неравновесной, изменяясь, приближается к равновесию. С наступлением равновесия процесс заканчивается (например, сравняются температуры тел, обменивающихся энергией в форме теплоты; механическое движение благодаря трению прекратится и полностью перейдет в молекулярное движение; два газа в результате смешения дадут равномерную смесь и т. д.).
Очевидно, что все неравновесные процессы протекают в направлении достижения равновесия и протекают “сами собой”, т. е. без воздействия внешней силы. Очевидно также, что обратные по направлению процессы (переход теплоты от тела с более низкой температурой к телу с более высокой температурой, самопроизвольное разделение компонентов газовой смеси и т. д.) будут удалять систему от равновесия и без внешнего воздействия, “сами собой” не могут пойти. Перечисленные выше процессы и им подобные, протекающие сами собой и приближающие систему к равновесию, являются самопроизвольными, они называются также положительными. Процессы, которые не могут протекать сами собой, без воздействия извне, удаляющие систему от равновесия, это - несамопроизвольные процессы, называемые также отрицательными. В изолированной системе, где исключены внешние воздействия, могут протекать только самопроизвольные (положительные) процессы.
Таким образом, по эмпирическому признаку - возможности протекания процесса, без сопровождения каким-либо другим процессом, все реальные процессы делятся на два типа - положительные и отрицательные. Равновесные процессы очевидно лежат на границе между указанными двумя классами процессов, не относясь к какому-либо из них (вернее, соединяя в себе процессы обоих типов).
Если имеется возможность по какому-либо признаку отнести любой интересующий нас процесс к типу самопроизвольных процессов, а обратный - к несамопроизвольным, не испытывая на опыте возможность того или другого, то можно предсказать направление процесса. Эту возможность нам дает второй закон термодинамики.
§ 2. Второй закон термодинамики
Наиболее часто встречающимися и безусловно самопроизвольными являются процессы передачи теплоты от горячего тела к холодному (теплопроводность) и перехода работы в теплоту (трение). Многовековая житейская, техническая и научная практика человечества показали повседневную реальность этих процессов, а также невозможность самопроизвольного протекания обратных процессов, очень заманчивых с практической точки зрения (получение работы за счет отнятия теплоты у тел, окружающих рабочее тело). Это дает основание утверждать, что единственным результатом любой совокупности процессов не может быть переход теплоты от менее нагретого тела к более нагретому (постулат Клаузиуса).
Обратный указанному переход теплоты от более нагретого тела к менее нагретому - это обычный неравновесный процесс передачи теплоты путем теплопроводности. Он не может быть обращен, т. е. проведен в обратном направлении через ту же последовательность состояний. Но этого мало: если в системе прошел процесс прямой передачи теплоты, то никаким образом нельзя осуществить такую последовательность любых процессов, в результате которой все тела, участвовавшие в передаче теплоты, пришли бы в исходное состояние и не произошло бы никаких изменений в других телах. Процесс теплопроводности необратим.
Другое общее положение, имеющее ту же опытную основу, утверждает следующее: единственным результатом любой совокупности процессов не может быть превращение теплоты в работу (т. е. поглощение системой теплоты из окружающей среды и отдача эквивалентной этой теплоте работы). Таким образом, самопроизвольный процесс превращения работы в теплоту (путем трения) необратим (так же, как и теплопроводность).
Последнее утверждение может быть изложено иначе: теплота наиболее холодного из участвующих в процессе тел не может служить источником работы (постулат Томсона).
Оба положения (постулаты Клаузиуса и Томсона) являются формулировками второго закона термодинамики и эквивалентны друг другу, т. е. каждое из них может быть доказано на основании другого.
Так как переход теплоты или ее превращение в работу рассматривается как единственный результат процесса, то очевидно необходимо, чтобы система, участвующая в теплообмене, возвращалась в результате процесса или совокупности процессов в первоначальное состояние. При таком циклическом процессе внутренняя энергия системы не изменится.
Предположим, что вторая из приведенных выше формулировок (особенно в последней ее форме) неправильна. Тогда можно было бы построить машину, работающую циклами, “рабочее тело” которой периодически возвращалось бы в исходное состояние, причем эта машина давала бы работу за счет теплоты, поглощаемой извне от тела, не более нагретого, чем сама система и все другие окружающие систему тела. Такой процесс протекал бы без нарушения первого закона термодинамики (работа за счет теплоты), но для практики он равноценен получению работы из ничего, так как всякая машина имела бы практически неисчерпаемый источник теплоты в окружающей среде. Так пароход мог бы двигаться, отнимая теплоту океанской воды и не нуждаясь в топливе. Такая машина называется перпетуум мобиле (вечный двигатель) второго рода. Исходя из этого определения, можно сформулировать второй закон термодинамики, придав постулату Томсона иную форму: перпетуум мобиле второго рода невозможен.
Следует подчеркнуть, что как положения Клаузиуса и Томсона, так и утверждение о невозможности перпетуум мобиле второго рода не доказываются на основании других законов или положений. Они являются предположениями, которые оправдываются всеми следствиями, из них вытекающими, но не могут быть доказаны для всех возможных случаев.
Приведем еще одну формулировку второго закона термодинамики, являющуюся, безусловно, достаточно точной и краткой. В этой формулировке содержится постулат о существовании новой функции состояния, через которую выражается различие между обратимыми и необратимыми процессами:
«Существует функция состояния термодинамической системы – энтропия. При обратимых процессах в изолированной системе ее энтропия не изменяется, а при необратимых – увеличивается».
В ходе самопроизвольного процесса энтропия изолированной системы должна возрастать, достигая максимального значения при равновесии. Выясним количественную меру энтропии:
dS (II,
1)
или в интегральном виде:
S2
– S1
= S (II,1a)
Выражения (II,1) и (II, 1а) являются определениями функции S, которая называется энтропией.
Энтропия является однозначной, непрерывной и конечной функцией состояния.
Энтропия
измеряется в тех же единицах, что и
теплоемкость, т.е. в джоулях на моль на
кельвин (
).
Как указывалось выше, элементарная теплота не является в общем случае дифференциалом функции. Из уравнения (II, 1) следует, что Q после деления на Т становится дифференциалом функции, т. е. с математической точки зрения, 1/Т является для теплоты интегрирующим множителем (или Т - интегрирующим делителем).
Исследуя энтропию, очевидно, можно предсказывать направление процесса. Если в изолированной системе для какого-либо процесса энтропия возрастает, то процесс возможен (может протекать самопроизвольно); если энтропия изолированной системы согласно расчету должна убывать, то процесс невозможен (отрицателен). При постоянстве энтропии - процесс равновесен, система бесконечно близка к равновесию.
Обобщая сказанное, можно записать следующее выражение:
(II,
2)
Следует подчеркнуть, что в системе, обменивающейся теплотой и работой с окружающей средой, возможны процессы, сопровождающиеся как возрастанием, так и убылью энтропии системы. Поэтому для однозначного решения вопроса о направлении процесса следует включить в систему все тела, участвующие в процессе, и таким образом сделать систему изолированной.