
- •Билет №1
- •Билет №1
- •2. Виды защит силовых трансформаторов. Их назначение. Максимальная токовая защита трансформатора с блокировкой по напряжению.
- •3.Влияние показателей качества электроэнергии на работу сетей и электроприемников.
- •Билет №2. Задача
- •Вопрос 1. Сварочные трансформаторы: устройство, вольтамперные характеристики, способы регулирования тока дуги.
- •Вопрос 2. Способы ограничения токов короткого замыкания.
- •3. Показатели качества напряжения.
- •Билет №3
- •Вопрос 2. Способы ограничения пусковых токов короткозамкнутых асинхронных и синхронных двигателей.
- •Вопрос 3. Схема замещения трехобмоточного трансформатора и определение его параметров.
- •Билет №4
- •2.Электромеханические характеристики реверсивного тиристорного привода.
- •Билет №5 Вариант №1
- •Вариант №2
- •1.Принцип работы и внешняя характеристика управляемого тиристорного преобразователя.
- •2. Составить схему замещения воздушной линии электропередачи.
- •3 Дифференциальные токовые защиты
- •Продольная дифференциальная защита
- •Ток небаланса
- •Поперечная дифференциальная токовая защита.
- •Билет №6
- •1 Карта селективности
- •2.Способы регулирования частоты вращения ад. Схемы включения. Механические характеристики.
- •3. Ударный ток кз. Расчет ударного тока при трехфазном кз. Ударный коэффициент и пределы его изменения.
- •Билет №7
- •1.Комплексная схема замещения для расчёта однофазного короткого замыкания на землю, вид и обоснования.
- •2.Уравнения и графики электромеханических характеристик двигателя постоянного тока независимого возбуждения.
- •3.Условия выбора проводов и жил кабеля в сетях выше 1000в.
- •Билет №8
- •1.Принцип построения системы регулирования скорости с отрицательной обратной связью по скорости. Какие параметры влияют на величину скорости и жесткости механической характеристики?
- •Вопрос 2.Особенности расчёта электрических нагрузок различных потребите лей (двигатели, освещение, сварка).
- •3.Назначение защитных заземлений и нормативы их выполнения.
- •Билет №9
- •1 Вопрос Системы оперативного тока, используемого на подстанциях, их достоинства и недостатки. Оперативный ток
- •2. Системы оперативного тока, используемого на подстанциях, их достоинства и недостатки.
- •2. Оценка динамической устойчивости электрической системы электроснабжения методом площадей.
- •Вопрос 1. Дать понятие о времени использования наибольшей (максимальной) нагрузки и показать способы ее определения.
- •3.Назначение и принцип действия апв.
- •Расчет электрической нагрузки мет одом упорядоченных диаграмм .
- •3Почему при частотном регулировании ад необходимо одновременно е изменение частоты и напряжения? в каком соотношении должны изменяться эти параметры?
- •Билет №12
- •Билет №12
- •Билет №13
- •1 Основные требования, предъявляемые к устройствам рзиа.
- •2Каким критериям должен удовлетворять правильно выбранный по мощности эл. Двигатель.
- •3 Особенности расчета токов к.З. В сетях до 1000 в.
- •1. Сопротивления прямой, обратной и нулевой последовательности воздушные линии и кабели.
- •2Компенсация реактивной мощности на промпредприятиях.
- •Билет №15
- •1.Установки диэлектрического нагрева: устройство, расчет мощности, источники питания.
- •2.Применение метода симметричных составляющих для расчета коротких замыканий и обрывов фаз.
- •Токовая отсечка с выдержкой времени.
- •Билет №17
- •1.Сопротивление нулевой последовательности двухобмоточных трансформаторов.
- •2 Способы регулирования напряжения в электрических сетях.
- •Билет №18
- •1.Показатели качества напряжения и способы их поддержания в заданных пределах.
- •Нагрузочная диаграмма двигателя и её построение. Классификация режимов работы двигателей по нагреву.(Савин)
- •3 Релейная защита трансформаторов Газовая защита
- •Билет №19
- •1 Дифференциальные токовые защиты
- •2 Нагрузочная диаграмма электропривода и ее построение. Классификация режимов работы по нагреву
- •8.1. К расчету мощности и проверке двигателя:
- •3.Классификация потребителей электроэнергии по надежности электроснабжения.
- •Билет №20
- •Вопрос 1. Принципы работы преобразователей частоты с промежуточным звеном постоянного тока для управления асинхронными двигателями. Как в нём регулируется частота и напряжение? (Савин)
- •Почему при частотном регулировании скорости асинхронного двигателя необходимо одновременное изменение частоты и напряжения? в каком соотношении измеряются эти два параметра?
- •Вопрос 2.
- •Защита плавкими предохранителями
- •Вопрос 3.
- •Билет №21
- •Вопрос 1.От чего зависят потери энергии в переходных режимах электропривода? Способы уменьшения этих потерь. (Савин)
- •Методы сокращения потерь в переходных процессах.
- •Вопрос 2. Периодическая и апериодическая составляющие тока короткого замыкания.
- •Вопрос 3.Защита трансформаторов малой и средней мощности 10/0,4 кВ
- •Билет №22
- •1.Сопротивления прямой, обратной и нулевой последовательности воздушные линии и кабели.
- •Вопрос 2. Собственные нужды обслуживаемых и необслуживаемых подстанций. Состав собственных нужд. Схемы подключения трансформаторов собственных нужд.
- •Состав собственных нужд тепловых электростанций твердого топлива.(Савин)
- •3.Максимальная токовая защита
- •Билет №23
- •Вопрос 1. Направленная максимальная токовая защита. Область применения. Расчет параметров срабатывания. Преимущества и недостатки. Схема мтз на переменном оперативном токе.
- •Вопрос 2. Реакторы. Устройство, назначение и основные параметры. Вольт-амперная характеристика.
- •3. Переходные и сверхпереходные эдс и сопротивления синхронных машин.
- •Вопрос 3Переходные и сверхпереходные эдс и сопротивления синхронных машин.
- •Билет №24
- •1 Расчета электрических нагрузок по методу упорядоченных диаграмм.
- •Вариант 2 пусть будет Методика расчета электрических нагрузок по методу упорядоченных диаграмм. Расчёт нагрузки I уровня электроснабжения.
- •2.Способы ограничения пусковых токов асинхронных короткозамкнутых и синхронных двигателей.
- •3.Ударный ток короткого замыкания. Расчет ударного тока при трехфазном кз. Ударный коэффициент , пределы его изменения
- •Билет №25
- •1.Построить векторную диаграмму напряжений для сетей до 110 кВ, расчет режима по данным начала сети.
- •2 .Устройства авр
- •3 Статическая устойчивость.
- •Билет №26
- •1. Оценка динамической устойчивости электрической системы электроснабжения методом площадей.
- •2. Мостиковые схемы. Влияние графика суточных нагрузок на положение выключателя.
- •3.Взаимная связь режимов напряжения и реактивной мощности в электрических сетях.
- •Билет №27
- •Билет №27
- •Билет №27
- •2. Системы оперативного тока, используемого на подстанциях, их достоинства и недостатки.
- •2 Или вопрос Системы оперативного тока, используемого на подстанциях, их достоинства и недостатки. Оперативный ток
- •Билет №28
- •Билет №28
- •1Потери мощности на корону: физический смысл, как определяются на действующей лэп ?
- •2Понятие падения и потери напряжения.
- •3Совместное действие релейной защиты и схемы апв. Ускорение защиты до апв, ускорение защиты после апв.
- •Билет №29
- •1.Вакуумно-дуговые и плазменно-дуговые печи, устройство, источники питания, параметрические источники тока.
- •Вопрос 2
- •Пример распределения токов
- •3.Влияние показателей качества электроэнергии на работу сетей и электроприемников.
- •Билет №30
- •1.Электрическая дуга постоянного и переменного тока; условия устойчивого и непрерывного горения.
- •2.Микропроцессорные устройства релейной защиты, автоматики.
- •3.Как влияют схемы и группы соединений двухобмоточных трансформаторов на трансформацию напряжений прямой , нулевой и обратной последовательностей.
- •Билет 31 Задача. Вариант №1
- •Вариант №2
- •Вопрос 1. Электрическая дуга постоянного и переменного тока; условия устойчивого и непрерывного горения.
- •Вопрос 2.Микропроцессорная релейная защита. Преимущества и недостатки.
- •Вопрос 3.Как влияют схемы и группы соединений двухобмоточных трансформаторов на трансформацию напряжений прямой , нулевой и обратной последовательностей.
Вариант №2
Дано:
Асинхронный двигатель с короткозамкнутым ротором ( )
Параметры нагрузочной диаграммы:
ΔU, % |
Момент, Н · м |
Время, с |
||||||||
М1 |
М2 |
М3 |
М4 |
М5 |
t1 |
t2 |
t3 |
t4 |
t5 |
|
4 |
0 |
160 |
200 |
80 |
120 |
200 |
250 |
150 |
250 |
400 |
Найти:
1) определить необходимую мощность двигателя и выбрать его по каталогу с учетом режима работы двигателя, условий пуска и допустимой перегрузки, отклонения напряжения ΔU в сети
2) для выбранного двигателя рассчитать номинальный и пусковой токи
Решение
Нагрузочная диаграмма
Для определения мощности двигателя по нагрузочной диаграмме вычисляем среднеквадратичный за время работы момент:
Фактическая продолжительность включения:
Из каталожных данных выбираем двигатель, номинальный момент которого ближайший больший:
где - коэффициент запаса, учитывающий влияние динамических нагрузок
ПВн – номинальная продолжительность включения , ПВн=100%
Номинальный момент двигателя по табличным данным вычисляется как:
Выбираем двигатель 4А180М6 У3 с данными:
Параметры Двигатель |
Рн, кВт |
кпд, % |
cosφ |
Мп Мн |
Мпуск Мн |
Мmin Мн |
Iп Iн |
n, об/мин |
4А180М6 У3 |
18,5 |
88 |
0,87 |
2 |
1,2 |
1 |
6,5 |
975 |
Номинальный момент выбранного двигателя:
Проверка по условию пуска:
Максимальный момент в цикле работы двигателя:
Условие проверки по возможности осуществления пуска:
-
условие выполняется
Проверка по допустимой перегрузке:
Критический момент двигателя (пиковый) по паспортным данным:
Максимальный момент в цикле работы двигателя:
Условие проверки по допустимой перегрузке:
-
условие выполняется
Проверка устойчивой работы при отклонении напряжения в сети:
Момент асинхронного двигателя пропорционален квадрату питающего напряжения .
Найдем критический (пиковый) момент двигателя при отклонении напряжения на 4%:
Условие проверки по допустимой перегрузке при отклонении питающего напряжения:
-
условие выполняется
Номинальный ток выбранного двигателя:
Пусковой ток:
Вопрос 1. Электрическая дуга постоянного и переменного тока; условия устойчивого и непрерывного горения.
Электрическая дуга постоянного и переменного тока.
Дуга в ВДП горит в парах металлов, заполняющих межэлектродное пространство, так как их потенциал ионизации ниже, чем других газов. Градиент напряжения на столбе дуги ВДП составляет 0,05 - 0, 25 В/мм. Низкий градиент напряжения в столбе объясняется мальм числом соударений и большими длинами свободного пробега частиц в столбе дуги. Дуга чаще всего имеет диффузный характер. Напряжение на.дуге ВДП составляет Ug= 30 : 50 В, его распределение по областям дуги следующие : UK= 15 : 20 В; Ua= 1 : 2 В. Большая часть мощности выделяется в дуге в приэлектродных областях. ВАХ 1 дуги ВДП ( рис.3.19 ) имеет две ветви -
падающую и пологовосходящую. Падающая ветвь до 300 А нерабочая. Так как ВАХ пологая, то запас естественной устойчивости дуги небольшой. Небольшие изменения напряжения на дуге, вызванные, например, кабельными короткими замыканиями, могут привести к резкому изменению тока, а следовательно и мощности дуги.
Рис.3.19. ВАХ дуги при переплаве молибдена, стали.
На практике стремятся снизить активное сопротивление R контура с дугой, чтобы уменьшить потери мощности, а для достижения устойчивого горения дуги применяют специальные источники - с крутопадающих ВАХ и источники тока.Способы регулирования тока дуги, их три: 1 - изменением напряжения источника питания; 2 - изменением добавочного сопротивления в цепи дуги (для дуг, питаемых от источников с жесткой ВАХ); 3 - изменением длины дуги (для дуг, питаемых от источников с жесткой ВАХ).
Рис.3.4. Изменение тока и напряжения дуги за период при активной (а) и активно-реактивной (б) нагрузке
Для дуг переменного тока кроме статических ВАХ характерны динамические ВАХ, так как напряжение источника периодически изменяет знак, катодное и анодное пятно периодически меняются местами. На рис.3.4,а изображен график изменения тока и напряжения дуги за период при активной нагрузке контура. Для зажигания дуги необходимо напряжение пробоя дугового промежутка - напряжение зажигания U3. При снижении напряжения источника до напряжения UП оно будет недостаточно для поддержания дугового промежутка в ионизированном состоянии, и дуга гаснет. Напряжение погасания UП несколько меньше U3, так как дуговой промежуток разогрет и для поддержания тока нужно меньшее напряжение.
В течение времени П ток не проходит через дуговой промежуток. В следующий полупериод картина повторяется. Таким образом, при- наличии в цепи только активного сопротивления дуга горит с перерывами, что ведет к уменьшению тепловой мощности, выделяющейся в дуге.
При включении в цепь дуги индуктивного сопротивления между током дуги и напряжением источника образуется сдвиг фаз на угол
(рис.3.4, б). При снижении напряжения источника Uистменьше Uд горение дуги поддерживается за счет энергии, накопленной в индуктивности. Расчеты показывают, что при cos< 0,85 наступает непрерывное горение дуги. Это несколько снижает коэффициент мощности установки, однако, обеспечивает непрерывное горение дуги и ограничивает токи короткого замыкания.
В маломощных дугах переменного тока имеются паузы тока вследствие интенсивного охлаждения, деионизации и других причин, поэтому для ее зажигания требуется повышенное напряжение. При хорошо теплоизолированной и мощной дуге (это, например,- дуга, горящая в парах металлов в печи) формы кривых тока и напряжения практически синусоидальны и дуга горит непрерывно.
На столб дуги действует собственное магнитное поле, вызывая сжатие его и магнитное поле, создаваемое током в жидкой ванне печи, которое в дуговых сталеплавильных печах трехфазного тока вызывает электромагнитное выдувание дуги из-под электрода. Дута переменного тока используется в дуговых сталеплавильных печах, руднотермических печах, плазменно-дуговых печах переменного тока, электрической дуговой сварке.
Рис.3.1. Распределение потенциала в электрической дуге.
В электрических дуговых печах превращение электрической энергии в тепловую происходит в электрическом разряде, протекающем в газе. При этом в небольшом объеме концентрируется значительная тепловая энергия, что удобно для проведения процессов плавки металлов.
Электропроводность газа обусловлена наличием свободных заряженных частиц - электронов и ионов. На рис.3.1 изображены электрическая дуга и распределение потенциала в ней.
Столб дуги расположен между катодом К и анодом А. Свободные частицы в газе образуются при контакте катода и анода. В месте контакта имеется значительное сопротивление, в котором выделяется тепловая энергия. Начинается интенсивное движение молекул,
соударение их. При этом появляются свободные электроны и ионы. Такое явление называется термической ионизацией. Газовая среда приобретает свойство электропроводности. При наличии электрического поля основным видом ионизации является ударная ионизация, когда вышедший из катода электрон под действием градиента напряжения ускоряется и при столкновении с нейтральным атомом или молекулой может выбить электрон.
Ионизированный газ приобретает четвертое состояние - плазму, характеризующуюся наличием электронов, ионов и нейтральных атомов. Одновременно с процессами ионизации происходят и процессы слияния электронов с положительными ионами - рекомбинация. Между этими процессами существует равновесие, характеризуемое степенью ионизации X, определяемой отношением числа ионов и электронов к полному числу нейтральных атомов в единице объема. Зависимость степени ионизации от температуры Т, давления Р и рода газа описывается уравнением Саха:
РX2/(1-x2)=2,4×10-4×T2,5×e-11600Uи/T
где UИ - потенциал ионизации газа, в котором горит дуга.
Температура столба дуги может быть приближенно определена по следующей формуле
ТД=810UИ.
Дуговой разряд по длине разделяют на три области: прикатодную с катодным падением напряжения UК, прианодную с анодным падением напряжения Ua, столб дуги, падение напряжения на котором UCT (рис.3.1). Приэлектродные области имеют размеры нескольких микрон, размер дуги определяется размером столба дуги. Около приэлектродных областей существуют объемные заряды (электроны у катода, ионы у анода), вследствие чего напряжение в приэлектродных областях изменяется скачком. В столбе дуги напряжение пропорционально длине дуги, градиент потенциала постоянен по длине дуги.
Рис.3.3. BAX дуги и источников питания при различных способах регулирования тока дуги.
На практике стремятся снизить активное сопротивление R контура с дугой, чтобы уменьшить потери мощности, а для достижения устойчивого горения дуги применяют специальные источники - с крутопадающих ВАХ и источники тока. Рассмотрим существующие способы регулирования тока дуги, их три: 1 - изменением напряжения источника питания (рис.3.3, а); 2 - изменением добавочного сопротивления в цепи дуги (для дуг, питаемых от источников с жесткой ВАХ) (рис.3.3, б); 3 - изменением длины дуги (для дуг, питаемых от источников с жесткой ВАХ) (рис.3.3, в).