
- •Билет №1
- •Билет №1
- •2. Виды защит силовых трансформаторов. Их назначение. Максимальная токовая защита трансформатора с блокировкой по напряжению.
- •3.Влияние показателей качества электроэнергии на работу сетей и электроприемников.
- •Билет №2. Задача
- •Вопрос 1. Сварочные трансформаторы: устройство, вольтамперные характеристики, способы регулирования тока дуги.
- •Вопрос 2. Способы ограничения токов короткого замыкания.
- •3. Показатели качества напряжения.
- •Билет №3
- •Вопрос 2. Способы ограничения пусковых токов короткозамкнутых асинхронных и синхронных двигателей.
- •Вопрос 3. Схема замещения трехобмоточного трансформатора и определение его параметров.
- •Билет №4
- •2.Электромеханические характеристики реверсивного тиристорного привода.
- •Билет №5 Вариант №1
- •Вариант №2
- •1.Принцип работы и внешняя характеристика управляемого тиристорного преобразователя.
- •2. Составить схему замещения воздушной линии электропередачи.
- •3 Дифференциальные токовые защиты
- •Продольная дифференциальная защита
- •Ток небаланса
- •Поперечная дифференциальная токовая защита.
- •Билет №6
- •1 Карта селективности
- •2.Способы регулирования частоты вращения ад. Схемы включения. Механические характеристики.
- •3. Ударный ток кз. Расчет ударного тока при трехфазном кз. Ударный коэффициент и пределы его изменения.
- •Билет №7
- •1.Комплексная схема замещения для расчёта однофазного короткого замыкания на землю, вид и обоснования.
- •2.Уравнения и графики электромеханических характеристик двигателя постоянного тока независимого возбуждения.
- •3.Условия выбора проводов и жил кабеля в сетях выше 1000в.
- •Билет №8
- •1.Принцип построения системы регулирования скорости с отрицательной обратной связью по скорости. Какие параметры влияют на величину скорости и жесткости механической характеристики?
- •Вопрос 2.Особенности расчёта электрических нагрузок различных потребите лей (двигатели, освещение, сварка).
- •3.Назначение защитных заземлений и нормативы их выполнения.
- •Билет №9
- •1 Вопрос Системы оперативного тока, используемого на подстанциях, их достоинства и недостатки. Оперативный ток
- •2. Системы оперативного тока, используемого на подстанциях, их достоинства и недостатки.
- •2. Оценка динамической устойчивости электрической системы электроснабжения методом площадей.
- •Вопрос 1. Дать понятие о времени использования наибольшей (максимальной) нагрузки и показать способы ее определения.
- •3.Назначение и принцип действия апв.
- •Расчет электрической нагрузки мет одом упорядоченных диаграмм .
- •3Почему при частотном регулировании ад необходимо одновременно е изменение частоты и напряжения? в каком соотношении должны изменяться эти параметры?
- •Билет №12
- •Билет №12
- •Билет №13
- •1 Основные требования, предъявляемые к устройствам рзиа.
- •2Каким критериям должен удовлетворять правильно выбранный по мощности эл. Двигатель.
- •3 Особенности расчета токов к.З. В сетях до 1000 в.
- •1. Сопротивления прямой, обратной и нулевой последовательности воздушные линии и кабели.
- •2Компенсация реактивной мощности на промпредприятиях.
- •Билет №15
- •1.Установки диэлектрического нагрева: устройство, расчет мощности, источники питания.
- •2.Применение метода симметричных составляющих для расчета коротких замыканий и обрывов фаз.
- •Токовая отсечка с выдержкой времени.
- •Билет №17
- •1.Сопротивление нулевой последовательности двухобмоточных трансформаторов.
- •2 Способы регулирования напряжения в электрических сетях.
- •Билет №18
- •1.Показатели качества напряжения и способы их поддержания в заданных пределах.
- •Нагрузочная диаграмма двигателя и её построение. Классификация режимов работы двигателей по нагреву.(Савин)
- •3 Релейная защита трансформаторов Газовая защита
- •Билет №19
- •1 Дифференциальные токовые защиты
- •2 Нагрузочная диаграмма электропривода и ее построение. Классификация режимов работы по нагреву
- •8.1. К расчету мощности и проверке двигателя:
- •3.Классификация потребителей электроэнергии по надежности электроснабжения.
- •Билет №20
- •Вопрос 1. Принципы работы преобразователей частоты с промежуточным звеном постоянного тока для управления асинхронными двигателями. Как в нём регулируется частота и напряжение? (Савин)
- •Почему при частотном регулировании скорости асинхронного двигателя необходимо одновременное изменение частоты и напряжения? в каком соотношении измеряются эти два параметра?
- •Вопрос 2.
- •Защита плавкими предохранителями
- •Вопрос 3.
- •Билет №21
- •Вопрос 1.От чего зависят потери энергии в переходных режимах электропривода? Способы уменьшения этих потерь. (Савин)
- •Методы сокращения потерь в переходных процессах.
- •Вопрос 2. Периодическая и апериодическая составляющие тока короткого замыкания.
- •Вопрос 3.Защита трансформаторов малой и средней мощности 10/0,4 кВ
- •Билет №22
- •1.Сопротивления прямой, обратной и нулевой последовательности воздушные линии и кабели.
- •Вопрос 2. Собственные нужды обслуживаемых и необслуживаемых подстанций. Состав собственных нужд. Схемы подключения трансформаторов собственных нужд.
- •Состав собственных нужд тепловых электростанций твердого топлива.(Савин)
- •3.Максимальная токовая защита
- •Билет №23
- •Вопрос 1. Направленная максимальная токовая защита. Область применения. Расчет параметров срабатывания. Преимущества и недостатки. Схема мтз на переменном оперативном токе.
- •Вопрос 2. Реакторы. Устройство, назначение и основные параметры. Вольт-амперная характеристика.
- •3. Переходные и сверхпереходные эдс и сопротивления синхронных машин.
- •Вопрос 3Переходные и сверхпереходные эдс и сопротивления синхронных машин.
- •Билет №24
- •1 Расчета электрических нагрузок по методу упорядоченных диаграмм.
- •Вариант 2 пусть будет Методика расчета электрических нагрузок по методу упорядоченных диаграмм. Расчёт нагрузки I уровня электроснабжения.
- •2.Способы ограничения пусковых токов асинхронных короткозамкнутых и синхронных двигателей.
- •3.Ударный ток короткого замыкания. Расчет ударного тока при трехфазном кз. Ударный коэффициент , пределы его изменения
- •Билет №25
- •1.Построить векторную диаграмму напряжений для сетей до 110 кВ, расчет режима по данным начала сети.
- •2 .Устройства авр
- •3 Статическая устойчивость.
- •Билет №26
- •1. Оценка динамической устойчивости электрической системы электроснабжения методом площадей.
- •2. Мостиковые схемы. Влияние графика суточных нагрузок на положение выключателя.
- •3.Взаимная связь режимов напряжения и реактивной мощности в электрических сетях.
- •Билет №27
- •Билет №27
- •Билет №27
- •2. Системы оперативного тока, используемого на подстанциях, их достоинства и недостатки.
- •2 Или вопрос Системы оперативного тока, используемого на подстанциях, их достоинства и недостатки. Оперативный ток
- •Билет №28
- •Билет №28
- •1Потери мощности на корону: физический смысл, как определяются на действующей лэп ?
- •2Понятие падения и потери напряжения.
- •3Совместное действие релейной защиты и схемы апв. Ускорение защиты до апв, ускорение защиты после апв.
- •Билет №29
- •1.Вакуумно-дуговые и плазменно-дуговые печи, устройство, источники питания, параметрические источники тока.
- •Вопрос 2
- •Пример распределения токов
- •3.Влияние показателей качества электроэнергии на работу сетей и электроприемников.
- •Билет №30
- •1.Электрическая дуга постоянного и переменного тока; условия устойчивого и непрерывного горения.
- •2.Микропроцессорные устройства релейной защиты, автоматики.
- •3.Как влияют схемы и группы соединений двухобмоточных трансформаторов на трансформацию напряжений прямой , нулевой и обратной последовательностей.
- •Билет 31 Задача. Вариант №1
- •Вариант №2
- •Вопрос 1. Электрическая дуга постоянного и переменного тока; условия устойчивого и непрерывного горения.
- •Вопрос 2.Микропроцессорная релейная защита. Преимущества и недостатки.
- •Вопрос 3.Как влияют схемы и группы соединений двухобмоточных трансформаторов на трансформацию напряжений прямой , нулевой и обратной последовательностей.
Билет №23
В ариант №1
Дано:
1) Напряжение в точке А: UA=121кВ
2) ТНБ=5000ч
3) Параметры трансформаторов: ТДН – 10000/115/11, ST =10 МВА, UK=10,5 %,
=60 кВт, =14 кВт, =0,9 %.
Исходные данные:
Параметры линии №1 |
Нагрузка SH |
|||||
l, км |
F, мм2 |
r0, Ом/км |
х0, Ом/км |
b0·10-6 См/км |
SН, МВА |
Cos φ |
80 |
А-150 |
0,195 |
0,415 |
2,9 |
15 |
0,95 |
Найти: Определить годовые потери электроэнергии в воздушной линии электропередачи и трансформаторах подстанции районной электрической сети.
Решение
Потери в трансформаторах:
Активная и реактивная составляющие нагрузки:
Зарядная мощность линии W:
Расчетная нагрузка:
Потери в линии W:
Время наибольших потерь:
Годовые потери электроэнергии в воздушной линии электропередачи и трансформаторах:
Вариант №2
Дано:
1) Напряжение в точке А: UA=121кВ
2) ТНБ=5000ч
3) Параметры трансформаторов: ТДН – 10000/115/11, ST =10 МВА, UK=10,5 %,
=60 кВт, =14 кВт, =0,9 %.
Исходные данные:
Параметры линии №1 |
Нагрузка SH |
|||||
l, км |
F, мм2 |
r0, Ом/км |
х0, Ом/км |
b0·10-6 См/км |
SН, МВА |
Cos φ |
100 |
А-185 |
0,156 |
0,4 |
2,95 |
21 |
0,9 |
Найти: Определить годовые потери электроэнергии в воздушной линии электропередачи и трансформаторах подстанции районной электрической сети.
Решение
Потери в трансформаторах:
Активная и реактивная составляющие нагрузки:
Зарядная мощность линии W:
Расчетная нагрузка:
Потери в линии W:
Время наибольших потерь:
Годовые потери электроэнергии в воздушной линии электропередачи и трансформаторах:
Вопрос 1. Направленная максимальная токовая защита. Область применения. Расчет параметров срабатывания. Преимущества и недостатки. Схема мтз на переменном оперативном токе.
Третья ступень защиты – максимальная токовая защита
Для селективного действия в сетях с двусторонним питанием МТЗ дополняется измерительным органом направления мощности КW. Такая защита называется токовой направленной.
Измерительные органы защиты.
Максимальное реле тока – РТ-40.
Реле направления мощности.
Защита реагирует не только на значение тока в защищаемом элементе, но и на его фазу относительно напряжения на шинах у места установки защиты.
Селективное действие защиты обеспечивается соответствующим включением органа направления мощности и выбором выдержки времени.
Принцип действия защиты.
При замыкании в любой точке фаза тока протекающего через защиты А1 и А4 не меняется. Их можно выполнить без реле направления мощности.
В
екторные
диаграммы при замыкании в точке К1
Векторные диаграммы при замыкании в точке К2
Фаза тока при перемещении точки КЗ от К1 к К2 в защитах А2 и А3 меняется на противоположную. Это используется в направленной защите.
Реле направлении мощности защиты А2 срабатывает при сдвиге фаз соответствующему КЗ в т. К1, а А3 – при сдвиге фаз, соответствующему КЗ в т. К2.
При КЗ в т. К1 срабатывают измерительные органы защит А1, А2, А4.
Для селективного отключения линии АБ согласовывают выдержки времени защит А1 и А4.
При КЗ в т. К2 срабатывают измерительные органы защит А1,А3,А4.
Д
ля
селективного отключения линии БВ
согласовывают выдержки времени защит
А1 и А4.
Выдержка времени направленной МТЗ
Стрелками показаны направления токов при которых срабатывает реле направления мощности (РНМ). Наличие РНМ в защитах 2 и 3, 4 и 5 позволяет не согласовывать их по времени.
Защиты объединяют в две группы:
А2, А4, А6.
А5, А3, А1.
В пределах каждой группы выдержки времени выбираются по ступенчатому принципу, как у МТЗ линии с одним источником питания.
Первая группа.
Минимальная выдержка у защита А2. tА2.
tА4=tА2+t, tА6=tА4+t
Аналогично для второй группы.
Ток срабатывания направленной МТЗ
Расчет тока срабатывании выполняется как и у ненаправленной МТЗ.
,
В данном случае учитываются только максимальные токи, направленные от шин в линию. Следовательно величина токов срабатывания может быть ниже, чем у ненаправленной МТЗ.
При неисправности цепей напряжения защита может срабатывать ложно из-за неправильного срабатывания реле направления мощности. Поэтому в схеме применяют устройство контроля неисправности цепей напряжения, которые выводят защиту из действия при их неисправности.
В сетях с глухозаземленныминейтралями при коротком замыкании на землю возможны срабатывания реле направления мощности, включенных на токи неповрежденных фаз при направлении мощности КЗ к шинам.
Защита может выводиться из действия при однофазных КЗ. Если не выводится, то необходимо дополнительно отстроится по току срабатывания
Мертвая зона токовой направленной защиты.
Чтобы реле направления мощности сработало, к нему нужно подводить напряжение.
При трехфазном КЗ в месте установки защиты напряжение равно 0.
Если
,
то реле работать не будет.
Появляется мертвая зона – зона, в пределах которой РНМ не действует. По величине эта зона небольшая.
Наличие мертвой зоны является недостатком направленной защиты.
Схемы включения реле направления мощности
С
хема включения на полные токи и напряжения фаз.
Типовой является 90-градусная схема включения.
Схема включения реле направления мощности на составляющие нулевой последовательности.
Используется в системах с заземленнойнейтралью.
Достоинства:
1) Отсутствие мертвой зоны.
2) Одно реле мощности.
3) Нечувствительность к токам нагрузки и токам качаний.
4) Простота.
Недостаток.
1)Не действует при КЗ за трансформатором при соединении его обмоток в звезда-треугольник.
2) Защиту нужно отстраивать от токов небаланса.
3
)
Включение реле направления мощности
на составляющие обратной последовательности.
ФТОП - фильтр тока обратной последовательности;
ФНОП – фильтр напряжения обратной последовательности;
Составляющие обратной последовательности возникают при всех несимметричных КЗ. В начальный момент возникают и при симметричном 3-х фазном КЗ.
Достоинства.
1. Простота выполнения.
2. Срабатывает при любых замыканиях , в том числе и за трансформатором с соединением обмоток звезда треугольник.
Защита отстраивается от токов небаланса фильтр
Общая оценка токовых направленных защит
Направленная защита отличается от ненаправленной наличием реле направления мощности (РНМ). Устанавливается на линиях с двусторонним питанием.
В сетях до 35 кВ включительно является основной. Выполняется в двухфазном исполнении.
В сетях с глухозаземленныминейтралями используется как защита от междуфазных КЗ.
Для защиты от замыканий на землю используется направленная токовая защита нулевой последовательности.
Широко используется для защиты от КЗ на землю в сетях 110 кВ с глухозаземленныминейтралями.
Наличие РНМ позволяет при расчете тока срабатывания учитывать только режимы, в которых мощность протекает от шин в линию. Это позволяет повысить чувствительность защиты.
Это используется в направленных токовых отсечках. Ненаправленные токовые отсечки селективны и используются на линиях с двусторонним питанием. Реле направления мощности добавляется для повышения их чувствительности. Однако, направленные токовые отсечки более сложны из-за наличия РНМ, появляется мертвая зона. Поэтому они используются как защиты нулевой последовательности в сетях с глухозаземленныминейтралями.
Направленная МТЗ со ступенчатой выдержкой времени обеспечивает селективное отключение КЗ в радиальных сетях с несколькими источниками питания и в кольцевых сетях с одним источником питания. Однако, из-за встречно-ступенчатого выбора выдержки времени третьей ступени в ряде случаев время отключения поврежденного участка вблизи источника питания получается большим. Это ограничивает применение третьей ступени в качестве отдельной защиты. Поэтому в большинстве случаев токовая направленная защита в качестве основной применяется лишь в сетях напряжением 35 кВ.
В сетях с более высоким напряжением она используется как резервная.
Для направленных токовых защит схемы используются такие же, как и для ненаправленных.
Схема направленной МТЗ на переменном оперативном токе