
- •Билет №1
- •Билет №1
- •2. Виды защит силовых трансформаторов. Их назначение. Максимальная токовая защита трансформатора с блокировкой по напряжению.
- •3.Влияние показателей качества электроэнергии на работу сетей и электроприемников.
- •Билет №2. Задача
- •Вопрос 1. Сварочные трансформаторы: устройство, вольтамперные характеристики, способы регулирования тока дуги.
- •Вопрос 2. Способы ограничения токов короткого замыкания.
- •3. Показатели качества напряжения.
- •Билет №3
- •Вопрос 2. Способы ограничения пусковых токов короткозамкнутых асинхронных и синхронных двигателей.
- •Вопрос 3. Схема замещения трехобмоточного трансформатора и определение его параметров.
- •Билет №4
- •2.Электромеханические характеристики реверсивного тиристорного привода.
- •Билет №5 Вариант №1
- •Вариант №2
- •1.Принцип работы и внешняя характеристика управляемого тиристорного преобразователя.
- •2. Составить схему замещения воздушной линии электропередачи.
- •3 Дифференциальные токовые защиты
- •Продольная дифференциальная защита
- •Ток небаланса
- •Поперечная дифференциальная токовая защита.
- •Билет №6
- •1 Карта селективности
- •2.Способы регулирования частоты вращения ад. Схемы включения. Механические характеристики.
- •3. Ударный ток кз. Расчет ударного тока при трехфазном кз. Ударный коэффициент и пределы его изменения.
- •Билет №7
- •1.Комплексная схема замещения для расчёта однофазного короткого замыкания на землю, вид и обоснования.
- •2.Уравнения и графики электромеханических характеристик двигателя постоянного тока независимого возбуждения.
- •3.Условия выбора проводов и жил кабеля в сетях выше 1000в.
- •Билет №8
- •1.Принцип построения системы регулирования скорости с отрицательной обратной связью по скорости. Какие параметры влияют на величину скорости и жесткости механической характеристики?
- •Вопрос 2.Особенности расчёта электрических нагрузок различных потребите лей (двигатели, освещение, сварка).
- •3.Назначение защитных заземлений и нормативы их выполнения.
- •Билет №9
- •1 Вопрос Системы оперативного тока, используемого на подстанциях, их достоинства и недостатки. Оперативный ток
- •2. Системы оперативного тока, используемого на подстанциях, их достоинства и недостатки.
- •2. Оценка динамической устойчивости электрической системы электроснабжения методом площадей.
- •Вопрос 1. Дать понятие о времени использования наибольшей (максимальной) нагрузки и показать способы ее определения.
- •3.Назначение и принцип действия апв.
- •Расчет электрической нагрузки мет одом упорядоченных диаграмм .
- •3Почему при частотном регулировании ад необходимо одновременно е изменение частоты и напряжения? в каком соотношении должны изменяться эти параметры?
- •Билет №12
- •Билет №12
- •Билет №13
- •1 Основные требования, предъявляемые к устройствам рзиа.
- •2Каким критериям должен удовлетворять правильно выбранный по мощности эл. Двигатель.
- •3 Особенности расчета токов к.З. В сетях до 1000 в.
- •1. Сопротивления прямой, обратной и нулевой последовательности воздушные линии и кабели.
- •2Компенсация реактивной мощности на промпредприятиях.
- •Билет №15
- •1.Установки диэлектрического нагрева: устройство, расчет мощности, источники питания.
- •2.Применение метода симметричных составляющих для расчета коротких замыканий и обрывов фаз.
- •Токовая отсечка с выдержкой времени.
- •Билет №17
- •1.Сопротивление нулевой последовательности двухобмоточных трансформаторов.
- •2 Способы регулирования напряжения в электрических сетях.
- •Билет №18
- •1.Показатели качества напряжения и способы их поддержания в заданных пределах.
- •Нагрузочная диаграмма двигателя и её построение. Классификация режимов работы двигателей по нагреву.(Савин)
- •3 Релейная защита трансформаторов Газовая защита
- •Билет №19
- •1 Дифференциальные токовые защиты
- •2 Нагрузочная диаграмма электропривода и ее построение. Классификация режимов работы по нагреву
- •8.1. К расчету мощности и проверке двигателя:
- •3.Классификация потребителей электроэнергии по надежности электроснабжения.
- •Билет №20
- •Вопрос 1. Принципы работы преобразователей частоты с промежуточным звеном постоянного тока для управления асинхронными двигателями. Как в нём регулируется частота и напряжение? (Савин)
- •Почему при частотном регулировании скорости асинхронного двигателя необходимо одновременное изменение частоты и напряжения? в каком соотношении измеряются эти два параметра?
- •Вопрос 2.
- •Защита плавкими предохранителями
- •Вопрос 3.
- •Билет №21
- •Вопрос 1.От чего зависят потери энергии в переходных режимах электропривода? Способы уменьшения этих потерь. (Савин)
- •Методы сокращения потерь в переходных процессах.
- •Вопрос 2. Периодическая и апериодическая составляющие тока короткого замыкания.
- •Вопрос 3.Защита трансформаторов малой и средней мощности 10/0,4 кВ
- •Билет №22
- •1.Сопротивления прямой, обратной и нулевой последовательности воздушные линии и кабели.
- •Вопрос 2. Собственные нужды обслуживаемых и необслуживаемых подстанций. Состав собственных нужд. Схемы подключения трансформаторов собственных нужд.
- •Состав собственных нужд тепловых электростанций твердого топлива.(Савин)
- •3.Максимальная токовая защита
- •Билет №23
- •Вопрос 1. Направленная максимальная токовая защита. Область применения. Расчет параметров срабатывания. Преимущества и недостатки. Схема мтз на переменном оперативном токе.
- •Вопрос 2. Реакторы. Устройство, назначение и основные параметры. Вольт-амперная характеристика.
- •3. Переходные и сверхпереходные эдс и сопротивления синхронных машин.
- •Вопрос 3Переходные и сверхпереходные эдс и сопротивления синхронных машин.
- •Билет №24
- •1 Расчета электрических нагрузок по методу упорядоченных диаграмм.
- •Вариант 2 пусть будет Методика расчета электрических нагрузок по методу упорядоченных диаграмм. Расчёт нагрузки I уровня электроснабжения.
- •2.Способы ограничения пусковых токов асинхронных короткозамкнутых и синхронных двигателей.
- •3.Ударный ток короткого замыкания. Расчет ударного тока при трехфазном кз. Ударный коэффициент , пределы его изменения
- •Билет №25
- •1.Построить векторную диаграмму напряжений для сетей до 110 кВ, расчет режима по данным начала сети.
- •2 .Устройства авр
- •3 Статическая устойчивость.
- •Билет №26
- •1. Оценка динамической устойчивости электрической системы электроснабжения методом площадей.
- •2. Мостиковые схемы. Влияние графика суточных нагрузок на положение выключателя.
- •3.Взаимная связь режимов напряжения и реактивной мощности в электрических сетях.
- •Билет №27
- •Билет №27
- •Билет №27
- •2. Системы оперативного тока, используемого на подстанциях, их достоинства и недостатки.
- •2 Или вопрос Системы оперативного тока, используемого на подстанциях, их достоинства и недостатки. Оперативный ток
- •Билет №28
- •Билет №28
- •1Потери мощности на корону: физический смысл, как определяются на действующей лэп ?
- •2Понятие падения и потери напряжения.
- •3Совместное действие релейной защиты и схемы апв. Ускорение защиты до апв, ускорение защиты после апв.
- •Билет №29
- •1.Вакуумно-дуговые и плазменно-дуговые печи, устройство, источники питания, параметрические источники тока.
- •Вопрос 2
- •Пример распределения токов
- •3.Влияние показателей качества электроэнергии на работу сетей и электроприемников.
- •Билет №30
- •1.Электрическая дуга постоянного и переменного тока; условия устойчивого и непрерывного горения.
- •2.Микропроцессорные устройства релейной защиты, автоматики.
- •3.Как влияют схемы и группы соединений двухобмоточных трансформаторов на трансформацию напряжений прямой , нулевой и обратной последовательностей.
- •Билет 31 Задача. Вариант №1
- •Вариант №2
- •Вопрос 1. Электрическая дуга постоянного и переменного тока; условия устойчивого и непрерывного горения.
- •Вопрос 2.Микропроцессорная релейная защита. Преимущества и недостатки.
- •Вопрос 3.Как влияют схемы и группы соединений двухобмоточных трансформаторов на трансформацию напряжений прямой , нулевой и обратной последовательностей.
Билет №12
Вариант №2
Дано:
Исходные данные:
-
№ цеха
Активная
мощность Р, кВт
Реактивная мощность Q, квар
Кол-во ПС в цехе
1
800
350
2
2
1900
800
1
3
1800
1200
1
4
750
450
2
5
830
710
2
6
800
650
2
7
700
420
1
8
690
390
2
9
810
540
2
Найти: Определить оптимальное место расположения главной понизительной подстанции (ГПП), число и мощность силовых трансформаторов ГПП, составить принципиальную однолинейную схему электроснабжения.
Решение
Определяем полные мощности цехов:
Примем центры нагрузок цеховых подстанций в центре цеха и определим их координаты:
1 (13,1 ; 85,4) 4 (21,3 ; 51,4) 7 (79 ; 17,3)
2 (77,9 ; 83,2) 5 (118,2 ; 44,3) 8 (150,7 ; 13,1)
3 (170,2 ; 85,1) 6 (6,9 ; 20,4) 9 (32,8 ; 6,3)
Определим оптимальное место расположения ГПП:
Выбор числа и мощности силовых трансформаторов ГПП:
Для большинства заводов характерно преобладание нагрузки второй категории, для которых необходимо питание от двух независимых взаимно резервирующих источников питания. Завод питается по двум воздушным линиям напряжением 110 кВ. Учитывая перечисленные выше пункты устанавливаем два трансформатора.
Активная и реактивная нагрузки на шинах ГПП:
Мощность трансформаторов:
где - коэффициент загрузки трансформатора в нормальном режиме (при преобладании потребителей 2-ой категории )
Выбираем трансформатор
Данная ГПП является тупиковой подстанцией поэтому выбираем типовую схему «Два блока с отделителями и неавтоматической перемычкой со стороны линии»
Принципиальная однолинейная схема ГПП
2.Индукционные, канальные и тигельные печи, устройство, расчет активной и полной мощности.По устройству канальная печь напоминает конструкцию силового понижающего трансформатора, первичной обмоткой которого является индуктор, а вторичной - расплавленный металл в виде замкнутого канала. Индукционная канальная печь (рис.5.5) состоит из футерованной ванны 1, футерованной крышки 2, трех или шести индукционных единиц 3. В состав индукционной единицы входит индуктор - 4, магнитопровод 5, подовый камень 6, плавильный канал 7.
Канал может быть круглым, прямоугольным и овальным. Кожух печи выполняют из листовой стали, в печи имеются дверцы для обслуживания и сливной носок. Печь снабжена механизмом наклона для слива металла. Футеровку ванны печи выполняют из огнеупорных кирпичей. Индуктор выполняется из медных трубок, при больших мощностях (больше 250 кВт) трубки охлаждаются водой. Для изготовления индуктора применяют трубки круглого или прямоугольного сечений, а также трубки специального профиля с утолщенной стороной, обращенной наружу - к каналу с металлом.
Под действием эдс в канале с металлом возникает переменный ток , который разогревает металл. Тепловая энергия, выделяемая в металле под действием тока, определяется по выражению
Q=I22r2
где r2- активное сопротивление металла в канале. Ом; -время протекания тока I2 через канал.
Активная мощность печи, необходимая для расплавления металла, массой Gm, за время пл, определяется по формуле
P1 = Gm Сэм/плП
где Сэм - энтальпия металла при температуре разливки, Вт. ч/кг;
П - общий кпд печи, берется по таблицам, составленным из практики эксплуатации печей.
Полная мощность, подводимая к индуктору, определяется по выражению
S1=U1I1=P1/cos
где I1 ток индуктора; cos - естественный косинус фи печи.
Активную мощность, выделяемую в канале, определяем по выражению:
P2=P1- PЭП = I2r22
где PЭП - электрические потери в индукторе, Вт. Электрические потери индуктора состоят из потерь в меди Рми потерь в стали индуктора Рс:
PЭП = Рм + Рс
Потери в меди и стали индуктора определяются по выражениям:
Рм = I12r , Рс = pCGC
где r - активное сопротивление индуктора. Ом; рс - удельные потери в стали, Вт/кг; Gc - масса магаитопровода индуктора, кг. Сила тока в канале определяется по выражению
I2 = I1W1
При сливе металла часть его остается в печи, во избежание замораживания ИКП. Если из печи вылить весь жидкий металл и загрузить холодную шахту, то она не расплавится, так как вторичная цепь будет разомкнута. Невозможность полного слива металла усложняет переход от одной марки к другой, так как приходится проводить несколько промежуточных промывочных плавок. Взаимодействие тока индуктора с током, протекающим в металле (канале) печи, вызывает электродинамические силы, перемешивающие металл.
От воздействия тока в канале с магнитным потоком, создаваемым этим же током, возникает сжимающий эффект, проявляющийся в сжимающем усилии, действующем на жидкий металл. При сильных магнитных полях усилия настолько велики, что могут вызывать пережатие металла в канале и прекращение протекания тока. Усилию сжатия противодействует статическое давление столба металла в канале и вне его. В начале плавки давление столба металла в канале невелико, поэтому плавку начинают на небольших токах. По мере расплавления металла давление столба металла увеличивается, увеличивают и ток индуктора. Для регулирования мощности тока индуктора ИКП снабжаются многоступенчатыми электропечными трансформаторами.
В ИКП плавят чугун, медь, алюминий, цинк, латунь, бронзу и другие металлы. Выпускают ИКП емкостью от 0,4 до 160 т жидкого металла. Кроме ИКП с вертикальным каналом выпускается и печи с горизонтальным каналом. Они обладают большей стойкостью футеровки ванны и канала.
Индукционные тигельные печи
Индукционная тигельная печь (рис.5.8) состоит из тигеля 1, индуктора 2, футерованной крышки 3, кожуха 4, расплавленного металла 5.
Принцип действия индукционной тигельной печи (ИТИ) основан на поглощении электромагнитной энергии материалом шихты.
Распределение энергии в шихте зависит от частоты тока, геометрических соотношений диаметра тигля и диаметра индуктора, размеров и электрофизических свойств шихты. Неравномерное распределение энергии по сечению шихты ускоряет нагревание и расплавление шихты. Энергия концентрируется в отдельных, прилежащих к стенкам тигля, слоях, вызывая их быстрое расплавление. Поскольку при изменении температуры изменяются как геометрические размеры сплавляемых друг с другом кусков металла, так и их магнитная проницаемость и удельное электрическое сопротивление, то частота тока выбирается из условий оптимального режима плавки, при которых процесс расплавления идет быстрее. ИТП по частоте источника питания подразделяются на: а) печи промышленной частоты; б) печи средней частоты (150-12000 Гц) с питанием от машинных и тиристорных преобразователей частоты; в) печи высокой частоты (66 кГц и более) с питанием от ламповых и полупроводниковых генераторов.
Отсутствие канала упрощает конструкцию печи, позволяет полностью сливать металл, облегчает осмотр и ремонт футеровки. ИТП получили распространение в металлургии спецсталей м сплавов. Отсутствие концентрированных источников тепла, углеродосодержащих электродов, позволяет получать стали и сплавы высокой степени чистоты по углероду и газам. Электродинамическое движение металла обеспечивает получение однородного сплава с заданным химическим составом. Однако в ИТП шлаки малоэффективны, так как нагреваются от металла. ИТП выпускаются емкостью 0, 06 - 60 т жидкого металла. Мощность, которую необходимо подвести к индуктору для расплавления металла массой GM и перегреве расплава до конечной температуры tMK, определяется по формуле
Р1=РПОЛ + ΣРМП + РЭП
где Рпол - полезная мощность, необходимая для нагрева, расплавления шихты и перегрева расплава, Вт; ΣРМП - суммарные тепловые потери печи, Вт.
Суммарные тепловые потери печи состоят из тепловых потерь через стены, под, крышку тигля и тепловых потерь излучением, методика их расчета изложена в [6].
Полезная мощность определяется по выражению
РПОЛ = GМ(сШ(tМП - tШ) + сЖ(tМК – tМП) + МП)/ПЛ
где смк - температура плавления металла, °С; tШ - начальная температура шихты; °С; Сш - удельная теплоемкость шихты, Вт.ч/кг*°С; Сж - удельная теплоемкость жидкого расплава, Вт.ч/кг*°С; МП - скрытая теплота плавления, Вт.ч/кг.
Полная мощность, подводимая к индуктору, определяется по выражению (5.20), активная мощность, выделяющаяся в тигле,- по выражению (5.21). Активная мощность P1 может быть определена также по выражению
Р1=РПОЛ/П= РПОЛ/ЭМ
гдеηЭ,ηМ - соответственно, электрический и тепловой кпд печи.
3.Система стабилизации скорости с положительной обратной связью по току якоря.Схема системы, получившей название «источник тока - двигатель» (ИТ - Д), показана на рис. 4.25, а. В этой схеме якорь двигателя 2 подключен к источнику тока 1 и обтекается постоянным током. Значение тока в обмотке возбуждения 3 и его направление могут изменяться с помощью потенциометра 4 и контактов К1и К2. Так как I = const, электромеханическая характеристика двигателя будет представлять собой вертикальную прямую линию (см. рис. 4.25, б).
Семейство механических характеристик легко получить на основании формулы M = kФI. Из нее видно, что при / = const момент двигателя и его направление определяются соответственно значением магнитного потока и его знаком. Таким образом, если с помощью потенциометра 4 (рис. 4.25, а) и контактов К1 и К2 изменять значение тока возбуждения и его направление, а тем самым и магнитный поток Ф, можно получить механические характеристики в виде прямых 1 ...6 при различных магнитных потоках от –Ф1 до +Ф6 (рис. 4.25, в). Такие характеристики обеспечивают постоянство момента на валу двигателя при любой его скорости, а ЭП приобретает свойства источника момента, управляемого по цепи возбуждения.
В каких же случаях могут потребоваться механические характеристики такого вида? Вспомним, что одна из функций ЭП связана с обеспечением регулируемого по значению усилия или момента для создания на исполнительном органе рабочей машины требуемого натяжения в обрабатываемом или изготавливаемом материале или изделии (производство листового металла, проводов, бумаги, текстильного полотна и др.). Очевидно, что ЭП с такими механическими характеристиками наиболее просто обеспечит выполнение этой функции, а также позволит получить постоянные по значению ускорения или замедления движения.