
- •Механическое движение. Виды движений, его характеристики.
- •2. Шкала электромагнитных излучений. Рентгеновское излучение
- •Часть 2. Выполните практическое задание
- •Электрический ток в жидкостях.
- •Часть 2. Выполните практическое задание
- •Внутренняя энергия. Работа в термодинамике. Количество теплоты.
- •Электрический ток в газах. Несамостоятельный и самостоятельный газовые разряды.
- •Часть 2. Выполните практическое задание
- •Закон всемирного тяготения.
- •Электрический ток в полупроводниках.
- •Часть 2. Выполните практическое задание
- •Принцип действия теплового двигателя. Кпд теплового двигателя.
- •Магнитное поле. Свойства магнитного поля.
- •Часть 2. Выполните практическое задание
- •Явление электромагнитной индукции. Правило Ленца.
- •Лабораторная работа на тему: «Определение относительной влажности воздуха».
- •Механическая энергия. Закон сохранения механической энергии.
- •Механические колебания. Параметры колебательного движения.
- •Часть 2. Выполните практическое задание
- •Колебательный контур. Превращение энергии в колебательном контуре.
- •Часть 2. Выполните практическое задание
- •Лабораторная работа «Изучение явления электромагнитной индукции»
- •2. Трансформаторы. Передача электроэнергии.
- •Часть 2. Выполните практическое задание
- •Идеальный газ в молекулярно – кинетической теории. Основное уравнение мкт.
- •Принцип радиосвязи.
- •Задача на закон Кулона.
- •Идеальный газ. Уравнение состояния идеального газа.
- •Законы отражения и преломления света.
- •Электризация тел. Закон Кулона. Закон сохранения электрического заряда.
- •Шкала электромагнитных излучений. Инфракрасное и ультрафиолетовое излучения.
- •Часть 2.Выполните практическое задание.
- •Электрическое поле. Свойства электрического поля.
- •Строение атомного ядра. Ядерные силы. Энергия связи атомных ядер
- •Часть 2. Выполните практическое задание
- •Радиоактивность. Альфа, бета, гамма – излучения
- •Часть 2. Выполните практическое задание
- •Природа электрического тока в металлах. Сверхпроводимость
- •Строение газообразных, жидких и твёрдых тел
- •Часть 2. Выполните практическое задание.
- •Конденсаторы. Назначение и устройство конденсаторов
- •Дисперсия света
- •Часть 2. Выполните практическое задание
- •Задача на изучение прямолинейно равномерного движения тел по графику или уравнению.
- •Принцип действия теплового двигателя. Кпд теплового двигателя
- •Интерференция света
- •Часть 2. Выполните практическое задание
- •Электризация тел. Закон Кулона. Закон сохранения электрического заряда.
- •Дифракция света. Дифракционная решётка.
- •Часть 2. Выполните практическое задание
- •Электрическая цепь. Законы Ома.
- •Фотоэффект. Уравнение Эйнштейна для фотоэффекта
- •Часть 2. Выполните практическое задание
- •1. Электрическая цепь. Последовательное и параллельное соединение проводников.
- •2. Ядерный реактор. Применение ядерной энергетики
- •Часть 2. Выполните практическое задание
- •Постоянный электрический ток. Условия его существования. Сила тока. Напряжение. Сопротивление.
- •Электромагнитное поле. Электромагнитные волны и их свойства
- •1)При l много больше длины волны в области волновой тени приема нет (дифракция не наблюдается)
- •Часть 2. Выполните практическое задание.
- •Часть 2. Выполните практическое задание
- •Часть 2. Выполните практическое задание
- •Часть 2. Выполните практическое задание
- •Действия электрического тока.
- •Часть 2. Выполните практическое задание
- •2. Принцип радиосвязи.
- •Часть 2. Выполните практическое задание
- •2. Трансформаторы. Передача электроэнергии.
- •Часть 2. Выполните практическое задание
- •1. Строение газообразных, жидких и твёрдых тел.
- •2. Дисперсия света
- •Дисперсия света
- •Часть 2. Выполните практическое задание
- •1. Действия электрического тока.
- •2. Радиоактивность. Альфа, бета, гамма – излучения.
- •Часть 2. Выполните практическое задание
2. Шкала электромагнитных излучений. Рентгеновское излучение
Шкала электромагнитных излучений условно включает в себя семь диапазонов:
Низкочастотные колебания
Радиоволны
Инфракрасное излучение
Видимое излучение
Ультрафиолетовое излучение
Рентгеновское излучение
Гамма излучение
Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Границы между отдельными областями шкалы излучений весьма условны.
Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.
Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей. В первую очередь это относится к рентгеновскому и g-излучениям, сильно поглощаемом атмосферой.
По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.
Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно g-лучи) поглощаются слабо. Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волны. Но главное различие между длинноволновым и коротковолновым излучениями в том, что коротковолновое излучение обнаруживает свойства частиц.
Рентгеновское излучение
Рентгеновское излучение - электромагнитные волны с длиной волны от 8*10-6 см. до 10-10 см.
Различают два вида рентгеновского излучения: тормозное и характеристическое.
Тормозное возникает при торможении быстрых электронов любым препятствием, в частности металлическими электронами.
Тормозное излучение электронов имеет непрерывный спектр, отличающийся от непрерывных спектров излучения, создаваемых твердыми телами или жидкостями.
Характеристическое рентгеновское излучение имеет линейчатый спектр. Характеристическое излучение возникает в результате того, что внешний быстрый электрон, тормозящийся в веществе, вырывает из атома вещества электрон, расположенный на одной из внутренних оболочек. При переходе на освободившееся место электрона более удаленного возникает рентгеновский фотон.
Устройство для получения рентгеновских лучей - рентгеновская трубка.
Схематическое изображение рентгеновской трубки.
X — рентгеновские лучи, K — катод, А — анод (иногда называемый антикатодом), С — теплоотвод, Uh — напряжение накала катода, Ua — ускоряющее напряжение, Win — впуск водяного охлаждения, Wout — выпуск водяного охлаждения.
Катод 1 представляет собой вольфрамовую спираль, испускающую электроны за счет термоэлектронной эмиссии. Цилиндр 3 фокусирует поток электронов, которые затем соударяются с металлическим электродом (анодом) 2. При этом появляются рентгеновские лучи. Напряжение между анодом и катодом достигает нескольких десятков киловольт. В трубке создается глубокий вакуум; давление газа в ней не превышает 10_о мм рт. ст.
Электроны, испущенные раскалённым катодом, ускоряются (при этом рентгеновские лучи не испускаются, т. к. ускорение слишком мало) и ударяются об анод, где они резко тормозятся (при этом испускаются рентгеновские лучи: т. н. тормозное излучение)
В то же время выбивают электроны из внутренних электронных оболочек атомов металла, из которого сделан анод. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с определённой, характерной для материала анода, энергией(характеристическое излучение)
Для рентгеновских лучей характерна малая длина волны, большая «жесткость».
Свойства:
высокая проникающая способность;
действие на фотопластинки;
способность вызывать ионизацию в веществах, сквозь которые эти лучи проходят.
Применение:
- Рентгенодиагностика. При помощи рентгеновских лучей можно «просветить» человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов
- Рентгенотерапия
- Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.) с помощью рентгеновского излучения называется рентгеновской дефектоскопией.
- В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК.
- В аэропортах активно применяются рентгенотелевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность.