
- •Основные сведения о графических системах (гс). Функции гс. Блок-схема гс. Основные сведения о графических системах (гс).
- •Функции гс
- •Блок-схема гс.
- •Векторный и растровый дисплеи. Получение изображения. Сравнительная характеристика.
- •Геометрические преобразования. Однородные координаты. Перенос, поворот, масштабирование в однородных координатах. Двумерные преобразования Перенос
- •Масштабирование
- •Поворот
- •Однородные координаты
- •Перенос
- •Композиции преобразований
- •(Трехмерных)
- •Преобразование отрезков в растровую форму. Простой, пошаговый алгоритмы, алгоритм Брезенхема.
- •Преобразования, как изменение систем координат.
- •Устранение искажений в растровых изображениях. Выравнивание. Мелкие и движущиеся объекты. Алгоритм By.
- •Заполнение области. Алгоритм построчного сканирования, алгоритм заполнения с затравкой. Заполнение линиями.
- •Растровая развёртка многоуг-в (метод использования когерентности сканируемых строк).
- •Растровая развёртка многоуг-в (метод использования когерентности рёбер).
- •Алгоритм отсечения отрезков Козна и Сазерленда. Алгоритм разбиения средней точкой.
- •Основные виды геометрических моделей.
- •Методы построения геометрических моделей (построение кривых и поверхностей, кусочно-аналитическое описание, кинематический принцип, булевы операции, полигональные сетки).
- •Поперечное сечение криволинейного объекта и его полигональная аппроксимация
- •Методы создания реалистических трехмерных изображений.
- •Получение проекций. Основные виды проекций.
- •Общие сведения об удалении скрытых линий. Сравнительная характеристика алгоритмов.
- •Алгоритм сортировки по глубине
- •Алгоритм разбиения области
- •Алгоритм, использующий z-буфер
- •Алгоритм построчного сканирования (пи)
- •Методы закраски полигональной сетки.
- •Фактура. Нанесение узора на поверхность
- •Фактура. Создание неровностей на поверхности.
- •Математическое описание перспективных проекций.
- •Алгоритм трассировки лучей.
- •Общие сведения о свете. Классификация поверхностей по виду отражения.
- •Модель освещения. Свойства объектов
- •4 Типа поверхностей:
- •Отражение диффузное
- •Зеркальное отражение
- •Пропускание света (прозрачность)
- •С рассеянным, диффузным и зеркальным с рассеянным и диффузным с рассеянным светом Без освещения
- •Специальные модели
- •Получение теней.
- •Источник на бесконечности
- •Локальный источник
- •Цвет и его характеристики.
- •Цветовые модели(rgb, cмy).
- •Системы смешивания основных цветов
- •Цветовые модели (hsv, hls). Цветовая гармония.
Геометрические преобразования. Однородные координаты. Перенос, поворот, масштабирование в однородных координатах. Двумерные преобразования Перенос
Точки на плоскости
можно перенести в позиции путем
добавления к координатам этих точек
констант переноса. Для каждой точки
,
которая перемещается в новую точку
,
сдвигаясь на
единиц по оси
и на
— по оси
,
можно написать:
.
(1)
Определим
векторы-строки:
,
тогда уравнения
(1):
,
(2)
или кратко:
.
(3)
Но объект есть множество точек. Его можно переносить, применяя уравнения (1) к каждой его точке. Но каждый отрезок состоит из бесконечного числа точек и этот процесс длился бы бесконечно долго. Удобнее все точки, принадлежащие отрезку перенести путем перемещения одних лишь крайних точек отрезка. И потом вычертить новый отрезок между ними.
Масштабирование
Точки можно
масштабировать (растянуть) в
раз по оси
и в
— по оси
.
Получим новые точки
с помощью умножения:
. (4)
Определим
как:
,
можно записать в
матричной форме:
(5)
или
Было применено
неоднородное
масштабирование,
при котором
.
Однородное
масштабирование
не влияет на пропорции.
Поворот
Точки могут быть
повернуты на угол
относительно начала координат. Тогда
координаты точки
:
В матричной форме:
(8)
или
(9)
где
— матрица поворота.
Положительное направление — против часовой стрелки, отрицательное — по часовой стрелке.
Однородные координаты
Однородные координаты - это математический механизм, связанный с определением положения точек в пространстве. Привычный аппарат декартовых координат, не подходит для решения некоторых важных задач в силу следующих соображений:
В декартовых координатах невозможно описать бесконечно удаленную точку. А многие математические и геометрические концепции значительно упрощаются, если в них используется понятие бесконечности. Например, "бесконечно удаленный источник света".
С точки зрения алгебраических операций, декартовы координаты не позволяют провести различия межу точками и векторами в пространстве. Действительно, (1,-2,5) - это направление или точка?
Невозможно использовать унифицированный механизм работы с матрицами для выражения преобразований точек. С помощью матриц 3x3 можно описать вращение и масштабирование, однако описать смещение (xў=x+a) нельзя.
Аналогично, декартовы координаты не позволяют использовать матричную запись для задания перспективного преобразования (проекции) точек.
Для решения этих проблем используются однородные координаты.
Преобразования переноса, масштабирования и поворота в матричной форме имеют вид:
Перенос реализуется с помощью операции сложения, а масштабирование и поворот — операции умножения. Удобно было бы эти преобразования представить в единой форме. Рассмотрим как это сделать.
Если мы выразим точки в однородных координатах, то все три преобразования можно реализовать с помощью операции умножения.
В однородных
координатах точка
записывается как
,
где
— масштабный множитель, не равный нулю.
При этом, если точка
задана в однородных координатах
,
то можно найти ее декартовые координаты:
Если же
,
то операция деления не нужна: