
- •Основные сведения о графических системах (гс). Функции гс. Блок-схема гс. Основные сведения о графических системах (гс).
- •Функции гс
- •Блок-схема гс.
- •Векторный и растровый дисплеи. Получение изображения. Сравнительная характеристика.
- •Геометрические преобразования. Однородные координаты. Перенос, поворот, масштабирование в однородных координатах. Двумерные преобразования Перенос
- •Масштабирование
- •Поворот
- •Однородные координаты
- •Перенос
- •Композиции преобразований
- •(Трехмерных)
- •Преобразование отрезков в растровую форму. Простой, пошаговый алгоритмы, алгоритм Брезенхема.
- •Преобразования, как изменение систем координат.
- •Устранение искажений в растровых изображениях. Выравнивание. Мелкие и движущиеся объекты. Алгоритм By.
- •Заполнение области. Алгоритм построчного сканирования, алгоритм заполнения с затравкой. Заполнение линиями.
- •Растровая развёртка многоуг-в (метод использования когерентности сканируемых строк).
- •Растровая развёртка многоуг-в (метод использования когерентности рёбер).
- •Алгоритм отсечения отрезков Козна и Сазерленда. Алгоритм разбиения средней точкой.
- •Основные виды геометрических моделей.
- •Методы построения геометрических моделей (построение кривых и поверхностей, кусочно-аналитическое описание, кинематический принцип, булевы операции, полигональные сетки).
- •Поперечное сечение криволинейного объекта и его полигональная аппроксимация
- •Методы создания реалистических трехмерных изображений.
- •Получение проекций. Основные виды проекций.
- •Общие сведения об удалении скрытых линий. Сравнительная характеристика алгоритмов.
- •Алгоритм сортировки по глубине
- •Алгоритм разбиения области
- •Алгоритм, использующий z-буфер
- •Алгоритм построчного сканирования (пи)
- •Методы закраски полигональной сетки.
- •Фактура. Нанесение узора на поверхность
- •Фактура. Создание неровностей на поверхности.
- •Математическое описание перспективных проекций.
- •Алгоритм трассировки лучей.
- •Общие сведения о свете. Классификация поверхностей по виду отражения.
- •Модель освещения. Свойства объектов
- •4 Типа поверхностей:
- •Отражение диффузное
- •Зеркальное отражение
- •Пропускание света (прозрачность)
- •С рассеянным, диффузным и зеркальным с рассеянным и диффузным с рассеянным светом Без освещения
- •Специальные модели
- •Получение теней.
- •Источник на бесконечности
- •Локальный источник
- •Цвет и его характеристики.
- •Цветовые модели(rgb, cмy).
- •Системы смешивания основных цветов
- •Цветовые модели (hsv, hls). Цветовая гармония.
Цвет и его характеристики.
Ахроматический и хроматический цвет
Так как свет является еще и волной, то, разумеется, он имеет длину волны. Длин волн бесконечное множество, но наш глаз в состоянии регистрировать только их небольшой диапазон, известный под названием видимой части спектра.
Цвет имеет психофизиологическую и психофизическую природу. Цвет предмета зависит не только от самого предмета, но также и от источника света, освещающего предмет и от системы человеческого видения. Некоторые предметы отражают свет (стена), другие его пропускают (стекло). Если поверхность, которая отражает только синий цвет, освещается красным светом, она будет казаться черной. Если источник зеленого света рассматривается через стекло, пропускающее только красный свет, он тоже покажется черным.
Зрительная система человека воспринимает электромагнитную энергию с длинами волн от 400 до 700 нм как видимый свет.
Источник или объект являются ахроматическим, если наблюдаемый свет содержит все видимые длины волн в примерно равных количествах. Ахроматический источник кажется белым, а свет от него — белым, черным или серым. Ахроматический свет — это то, что мы видим на экране черно-белого телевизора. Белыми выглядят объекты, ахроматически отражающие более 80 % света белого источника, а черными — менее 3 %. Промежуточные значения дают различные оттенки серого цвета.
Ахроматический свет характеризуется интенсивностью (яркостью). Свет называется хроматический, если он содержит длины волн в произвольных неравных количествах. Если длины волн сконцентрированы у верхнего края видимого спектра, то свет кажется красным, если у нижнего — то синим.
Но сама по себе эл/м энергия определенной длины волны не имеет никакого цвета. Ощущение цвета возникает в результате преобразования физических явлений в глазу или мозге человека. Объект кажется цветным, если он отражает или пропускает свет лишь в узком диапазоне длин волн и поглощает все остальные.
Психофизиологическое представление света опр-ся:
цветовой тон
насыщенность
светлота
Цветовой тон позволяет различать цвета (к, з, с).
Насыщенность определяет
а б
Рис. 15.1 степень ослабления (разбавления) данного цвета белым цветом и позволяет различать розовый цвет от красного, голубой от синего. У чистого цвета насыщенность = 100 % и уменьшается по мере добавления белого. Насыщенность ахроматического цвета = 0 %.
Светлота — это интенсивность, которая не зависит от цветового тона и насыщенности. Ноль - значит черный, более высокие значения характеризуют более яркие значения.
Психофизические определяющие цвета:
доминирующая длина волны
ч
истота
яркость.
Доминирующая длина волны определяет монохроматический цвет (рис. б) = 520 нм зеленый.
Чистота характеризует насыщенность цвета и определяется отношением Е1 и Е2. Е1 — характеризует степень разбавления чистого цвета с = 520 нм белым. Если Е1 стремится к 0, то чистота — к 100 %, если Е1 стремится к Е2, то свет — к белому и чистота — к 0. Яркость пропорциональна энергии света и рассматривается как интенсивность на единицу площади. Для ахроматического света Рис. 15.2 яркость есть интенсивность.
Художники используют другие характеристики цвета:
разбелы
оттенки
тона.
Разбелы получаются при добавлении в чистый цвет белого, оттенки — черного, тона — и черного, и белого.
О
бычно
встречаются не чистые монохроматические
цвета, а их смеси. В основе 3-х компонентной
теории света лежит предположение о
том, что в сетчатке глаза есть 3 типа
чувствительных к свету колбочек, которые
воспринимают соответственно зеленый,
красный и синий цвета. Относительная
чувствительность глаза максимальна
для зеленого цвета и минимальна для
Рис. 15.4 Рис. 15.3
синего. Если на все 3 типа колбочек воздействует одинаковый уровень энергетической яркости (энергия в единицу t), то свет кажется белым.