
- •Основные сведения о графических системах (гс). Функции гс. Блок-схема гс. Основные сведения о графических системах (гс).
- •Функции гс
- •Блок-схема гс.
- •Векторный и растровый дисплеи. Получение изображения. Сравнительная характеристика.
- •Геометрические преобразования. Однородные координаты. Перенос, поворот, масштабирование в однородных координатах. Двумерные преобразования Перенос
- •Масштабирование
- •Поворот
- •Однородные координаты
- •Перенос
- •Композиции преобразований
- •(Трехмерных)
- •Преобразование отрезков в растровую форму. Простой, пошаговый алгоритмы, алгоритм Брезенхема.
- •Преобразования, как изменение систем координат.
- •Устранение искажений в растровых изображениях. Выравнивание. Мелкие и движущиеся объекты. Алгоритм By.
- •Заполнение области. Алгоритм построчного сканирования, алгоритм заполнения с затравкой. Заполнение линиями.
- •Растровая развёртка многоуг-в (метод использования когерентности сканируемых строк).
- •Растровая развёртка многоуг-в (метод использования когерентности рёбер).
- •Алгоритм отсечения отрезков Козна и Сазерленда. Алгоритм разбиения средней точкой.
- •Основные виды геометрических моделей.
- •Методы построения геометрических моделей (построение кривых и поверхностей, кусочно-аналитическое описание, кинематический принцип, булевы операции, полигональные сетки).
- •Поперечное сечение криволинейного объекта и его полигональная аппроксимация
- •Методы создания реалистических трехмерных изображений.
- •Получение проекций. Основные виды проекций.
- •Общие сведения об удалении скрытых линий. Сравнительная характеристика алгоритмов.
- •Алгоритм сортировки по глубине
- •Алгоритм разбиения области
- •Алгоритм, использующий z-буфер
- •Алгоритм построчного сканирования (пи)
- •Методы закраски полигональной сетки.
- •Фактура. Нанесение узора на поверхность
- •Фактура. Создание неровностей на поверхности.
- •Математическое описание перспективных проекций.
- •Алгоритм трассировки лучей.
- •Общие сведения о свете. Классификация поверхностей по виду отражения.
- •Модель освещения. Свойства объектов
- •4 Типа поверхностей:
- •Отражение диффузное
- •Зеркальное отражение
- •Пропускание света (прозрачность)
- •С рассеянным, диффузным и зеркальным с рассеянным и диффузным с рассеянным светом Без освещения
- •Специальные модели
- •Получение теней.
- •Источник на бесконечности
- •Локальный источник
- •Цвет и его характеристики.
- •Цветовые модели(rgb, cмy).
- •Системы смешивания основных цветов
- •Цветовые модели (hsv, hls). Цветовая гармония.
Зеркальное отражение
Что означает термин «идеальное зеркало»? Будем полагать, что у такого зеркала идеально ровная отполированная поверхность, поэтому одному отраженному лучу соответствует только один падающий луч. Зеркало может быть затемненным, то есть поглощать часть световой энергии, но все равно остается правило: один луч падает — один отражается. Можно рассматривать также «неидеальное зеркало». Это будет означать, что поверхность неровная. Один падающий луч порождает несколько отраженных лучей, образующих некоторый конус, возможно несимметричный, с осью вдоль линии падающего луча идеального зеркала. Конус соответствует некоторому закону распределения интенсивностей, простейший из которых описывается моделью Фонга — косинус угла, возведенный в некоторую степень.
Зеркальное отражение можно получить от любой блестящей поверхности. Осветим ярким светом яблоко – световой блик возникнет в результате зеркального отражения, а свет, отраженный от остальной части яблока – диффузный. В месте светового блика яблоко кажется не красным, а белым, т.е. окрашенным в цвет падающего света. Т.к. зеркально отраженный свет сфокусирован вдоль вектора отражения, блики при движении наблюдателя тоже смещаются.
Учитывать зеркальное отражение в модели освещения впервые предложил Фонг. Эти блики существенно увеличивают реалистичность изображения, ведь редкие реальные поверхности не отражают свет, поэтому эта составляющая очень важна. Особенно в движении, потому что по бликам сразу видно изменение положения камеры или самого объекта.
Зеркальное
отражение света является направленным.
Угол отражения от идеальной отражающей
поверхности (зеркала) = углу падения; в
любом другом положении наблюдатель не
видит зеркально отраженный свет
.
Д
ля
неидеально отраженных поверхностей
(яблоко) интенсивность отраженного
света резко падает с увеличением
.
У гладких поверхностей распределение
узкое, сфокусированное, у шероховатых
– более широкое.
Эмпирическая модель Фонга:
Рис.
13.7
- кривая отражения, представляет собой
отношение зеркально отраженного света
к падающему, как функцию угла падения
и длины волны
.
Большие значения n дают сфокусированные распределения характеристик металлов и др. блестящих поверхностей, а малые – более широкие распределения для малоблестящих поверхностей.
К
оэффициент
отражения для металлов (n) может быть
больше 80%, а для неметаллов – всего 4%.
Функция
очень сложна, поэтому ее обычно заменяют
коэффициентом
,
который выбирается из эстетических
соображений, либо определяется
экспериментально.
Рис. 13.8 обычно одинакова для всех 3-х основных цветов.
Модель освещения (функция закраски):
Если есть несколько (m) источников света, то их эффекты суммируются:
Пропускание света (прозрачность)
Поверхности могут направленно и диффузно пропускать свет. Направленное пропускание света происходит сквозь прозрачные вещества (стекло). Через них хорошо видны предметы, несмотря на то, что лучи света, как правило, преломляются, т.е. отклоняются от первоначального направления. Диффузное пропускание света происходит сквозь просвечивающиеся материалы (замерзшее стекло), в которых поверхностные неоднородности приводят к беспорядочному перемешиванию световых лучей. Поэтому очертания предмета, рассмотренного через такие материалы, размыты.
При переходе из одной среды в другую световой луч преломляется (торчащая из воды палка кажется согнутой). Преломление рассчитывается по закону Снеллиуса: падающий и преломляющий лучи лежат в одной плоскости, а углы падения и преломления определяются:
Рис. 13.9
-
показатели преломления двух сред.
Моделирование пропускания света осуществлялось несколькими способами. В простейшем из них преломление не учитывалось совсем и световые лучи пересекают поверхность без изменения направления. Т.о. все, что видимо на луче зрения при его прохождении через прозрачную поверхность, геометрически также принадлежит этому лучу. При наличии преломления геометрический и оптический лучи зрения не совпадают. Без учета преломления виден предмет В, с преломлением – А. На 1-ый взгляд достаточно знать угловые соотношения в точках пересечения луча с объектом. Но это не так, т.к. длина пути луча в объекте тоже меняется, 1) не совпадают т. выхода луча из объекта; 2) меняется количество поглощенного объектом света, поэтому исходящий луч имеет другую интенсивность.
Рис. 13.10
Простое пропускание света можно встроить в любой алгоритм удаления невидимых поверхностей, кроме z – буфера, т.к. поверхности в нем обрабатываются в произвольном порядке. Если используется алгоритм построчного сканирования и передний многоугольник оказывается прозрачным, определяется ближайший из др. многоугольников, внутри которых находится сканирующая строка. Уровень закраски определяется как взвешенная сумма уровней, вычисленных для каждого из двух многоугольников:
— интенсивность
видимой поверхности,
— интенсивность
поверхности за видимой,
— коэффициент
прозрачности поверхности 1 (
полная
прозрачность
полная
непрозрачность).
Если тоже прозрачна, то алгоритм применяется рекуррентно, пока не встретится непрозрачная поверхность или фон.
При расчете общей интенсивности обычно используется направленный пропущенный свет, поскольку учет диффузного вызывает много сложностей. Поэтому моделируются только прозрачные вещества.
Общий вид модели освещения:
,
где а – рассеянный свет, d – диффузноотраженный свет, s - зеркальноотраженный свет, t – пропущенный свет.