Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsii_SM_Chast_1.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
819.2 Кб
Скачать

Лекция 1. Жесткостные характеристики упругих элементов конструкции

Прочность – способность конструкции выдерживать заданную нагрузку, не разрушаясь.

Жесткость – способность конструкции препятствовать изменению формы под действием нагрузки.

Рассмотрим жесткостные характеристики прямолинейного стержня.

Приложим в полюсе систему сил

, а также

моментов ..

Обозначим:

–поступательное

перемещение полюса (т.О);

– угловое перемещение полюса (т.О).

Заметим, что положительным направлением для моментов и углов поворота является направление против часовой стрелки.

; ;

;

; ;

, (1.1)

где - модуль упругости I-го рода (модуль Юнга);

- модуль упругости II-го рода (модуль упругости при сдвиге);

- площадь плоского сечения;

, - моменты инерции плоских сечений относительно осей Oy, Oz;

- момент инерции при кручении;

, - коэффициенты формы при сдвиге;

;

;

;

( для прямоугольного сечения);

(при ; при )

; коэффициент Пуассона.

Введем следующие обозначения:

Обобщенное перемещение:

.

Обобщенная сила:

.

Запишем перемещение полюса для общего случая формы стержня:

;

;

;

;

;

. (1.2)

Перепишем уравнения перемещения полюса в координатной форме в следующем виде:

(1.3)

Мы можем записать их в матричной форме:

; (1.4)

где ; ,

- матрица податливости (квадратная матрица размерности (6х6);

( ) - элементы матрицы податливости.

Матрица податливости Δ однозначно и полностью описывает жесткостные характеристики рассматриваемого упругого элемента (в данном случае стержня).

Элемент матрицы податливости ( ) – это величина, численно равная перемещению в -ом направлении при действии единичной силы в -ом направлении:

. (1.5)

- диагональные элементы характеризуют податливость стержня в направлении действующей силы ;

при - эти элементы характеризуют линейную податливость стержня (размерность элементов [м/Н] );

при - эти элементы характеризуют угловую податливость стержня (размерность элементов [1/мН] );

при , и при , - эти элементы характеризуют перекрестные связи между угловыми и линейными перемещениями полюса (размерность элементов [1/Н] ).

Интеграл Мора, описывающий перемещение ( ) произвольной точки упругого стержня при действии внешней нагрузки,

где - соответствующие внутренние усилия, возникающие от действия внешней нагрузки;

( ) - соответствующие внутренние усилия, возникающие от действия в полюсе единичной нагрузки ( ).

На основании интеграла Мора и выражения (1.5) запишем формулу для определения элементов ( ) матрицы податливости:

. (1.6)

Согласно выражения (1.6) является очевидным, что ( ).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]