
- •Глава 1
- •Глава 1. Анатомия и физиология репродуктивной системы женщины 9
- •Глава 1. Анатомия и физиология репродуктивной системы женщины 11
- •Глава 1. Анатомия и физиология репродуктивной системы женщины 13
- •Глава 1. Анатомия и физиология репродуктивной системы женщины 15
- •Глава 1. Анатомия и физиология репродуктивной системы женщины I?
- •Глава 1. Анатомия и физиология репродуктивной системы женщины 19
- •Глава 1. Анатомия и физиология репродуктивной системы женщины 21
- •Глава 1. Анатомия и физиология репродуктивной системы женщины 23
- •Глава 1. Анатомия и физиология репродуктивной системы женщины 25
- •Глава 1. Анатомия и физиология репродуктивной системы женщины 27
- •Глава 1. Анатомия и физиология репродуктивной системы женщины 29
- •Стероидогенеза
- •Глава 1. Анатомия и физиология репродуктивной системы женщины 31
Глава 1
АНАТОМИЯ И ФИЗИОЛОГИЯ РЕПРОДУКТИВНОЙ СИСТЕМЫ ЖЕНЩИНЫ
Татарчук Т.Ф., Сольский Я.П., Регеда СИ., Бодрягова О.И.
Рисунок 1.
Функциональная структура репродуктивной
системы
Глава 1. Анатомия и физиология репродуктивной системы женщины 9
Регуляция функции репродуктивной системы определяется гипоталамо-гипофизарным звеном, которое, в свою очередь, посредством нейромедиато-ров и нейротрансмиттеров контролируется корой головного мозга (Lakoski J.M., 1989).
Гипоталамус является своеобразными биологическими часами организма, то есть системой саморегулирования и автоматизации нейрорегуляторных процессов, которая реализует информацию, поступающую из внешней и внутренней среды организма, обеспечивая тем самым внутренний гомеостаз, необходимый для нормального течения физиологических процессов. Именно гипоталамус является тем ключевым звеном, координирующим деятельность гипоталамо-гипофизарно-яичникового комплекса, функция которого регулируется как нейропептидами ЦНС, так и яичниковыми стероидами по механизму обратной связи (Wildt L., 1989; Sopelak V.M., 1997).
Учитывая достаточно хорошую освещённость в современной литературе периферического звена репродуктивной системы, а также увеличение роли всё возрастающих психоэмоциональных нагрузок в механизмах развития дис-гормональных нарушений, мы сочли целесообразным более подробно остановиться на некоторых аспектах участия надгипоталамических структур в регуляции репродуктивной системы.
Как известно, мозг состоит из двух типов клеток: из нейронов, составляющих 10% всех клеток мозга и из глии — астроцитов и олигодендритов, составляющих, соответственно, остальные 90%.
Развитие нейронов и глии происходит из нейроэпителиального предшественника — стволовой клетки, в результате развития которой происходит синтез 2-х клеточных линий: нейрональных клеток-предшественников, из которых возникают различные типы нейронов, и глиальных клеток-предшественников, из которых в дальнейшем развиваются астроциты и олигодендро-циты (Lakoski J.M., 1989; Sopelak V.M., 1997).
Нейроны — это высокодифференцированные клетки с четкими размерами, формой и внутриклеточными органеллами. Как и все другие клетки, за исключением эритроцитов, нейроны имеют тело клетки, в центре которого располагается ядро, окруженное различным объемом цитоплазмы.
От поверхности нейронов ответвляются воспринимающие отростки — дендриты и единственный главный передающий отросток — аксон, который простирается к своим специфическим синаптическим клеткам-мишеням и может значительно варьировать по длине (Sopelak V.M., 1997).
Ключевой процесс жизнедеятельности нейрона концентрируется в цитоплазме тела клетки (она также называется перикарионом), и затем продукты нейронального синтеза транспортируются в аксоны и дендриты. Двухсторонний транспорт между участками тела клетки и дистальными отростками обеспечивает целостность нейронной функции и является постоянным энергетически-зависимым слаженным процессом.
10 7 Эндокринная гинекология
Клетки глии (от английского слова glue — клей) первоначально рассматривали как поддерживающие клетки мозга, но исследования последних лет определили их важную функциональную роль в регуляции жизнедеятельности нейронов. Этот класс ненейронных клеточных элементов, в 9 раз превышающий количество нейронов, фактически обеспечивает взаимодействие между ними.
Наиболее многочисленные глиальные клетки названы астроцитами, благодаря их мультиотростковым очертаниям. Эти клетки характеризуются уникальной экспрессией глиального фибриллярного кислотного протеина и расположены между наружной поверхностью сосудов, нейронами и их соединениями (рис. 2). Отростки астроцитов направляются от нейронов к капиллярам, где они формируют периваскулярное основание.
Рисунок 2. Взаимосвязь нейронов, астроцитов и олигодендроцитов (Yen S.S.C., 1999)
Капиллярное основание астроцитов охватывает около 85% капилляров человеческого мозга и формирует гемато-энцефалический барьер.