
- •Кинематика материальной точки. Пространственные и временные системы отсчета. Траектория, перемещение точки, скорость, нормальное, тангенциальное и полное ускорения. Радиус кривизны траектории.
- •Динамика материальной точки, движущейся поступательно. Инерциальные системы отсчета. Законы Ньютона.
- •Масса и вес. Принцип относительности Галилея. Импульс силы. Импульс материальной точки и механической системы. Закон сохранения импульса. Центр масс механической системы и закон его движения.
- •Механическая энергия материальной точки и механической системы. Работа силы. Кинетическая энергия материальной точки и механической системы; связь с работой внешних и внутренних сил. Мощность.
- •Неинерциальные системы отсчета. Силы инерции.
- •Первое начало термодинамики. Работа газа при изобарном расширении. Применение первого начала термодинамики к изопроцессам.
- •Теплоемкость многоатомных газов. Обратимые и необратимые тепловые процессы. Тепловые и холодильные машины и их коэффициенты полезного действия (кпд).
- •Цикл Карно. Второе начало термодинамики. Энтропия. Статистическое толкование энтропии.
- •Циркуляция вектора напряженности электростатического поля. Работа сил поля при перемещении заряда.
- •Потенциальная энергия заряда. Потенциал. Связь между напряженностью и потенциалом. Энергия взаимодействия системы зарядов.
- •Проводники в электрическом поле. Поле внутри проводники, вне его, вблизи проводника. Электроемкость уединенного проводника, взаимная емкость двух проводников, конденсаторы.
- •Сила тока, плотность тока, разность потенциалов, напряжение, электродвижущая сила. Сопротивление проводников. Закон Ома для участка цепи и для замкнутой цепи.
- •Соединения сопротивлений и источников тока. Правила Кирхгофа для разветвленных цепей.
- •Работа и мощность тока. Закон Джоуля-Ленца
- •Магнитное поле. Магнитная индукция. Закон Био-Савара-Лапласа и его применение к расчету магнитных полей
- •Закон Ампера. Действие магнитного поля на проводник с током. Момент сил, действующий на виток с током в магнитном поле.
- •Сила Лоренца. Движение заряженных частиц в магнитном поле. Циркуляция вектора индукции магнитного поля.
- •Работа по перемещению проводника и контура с током в магнитном поле. Закон полного тока. Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля.
- •Электромагнитная индукция. Электродвижущая сила индукции. Закон Фарадея и его применение. Правило Ленца. Вращение рамки с током в магнитном поле. Самоиндукция.
- •Индуктивность контура. Токи при замыкании и размыкании цепи. Взаимная индукция. Энергия магнитного поля.
- •Свободные гармонические колебания; механические и электромагнитные. Дифференциальное уравнение колебаний и его решение.
- •Пружинный, математический и физический маятники.
- •Свободные затухающие колебания. Дифференциальное уравнение и его решение. Параметры затухающих колебаний.
- •Дифференциальное уравнение электромагнитного волнового процесса. Основные свойства электромагнитных волн. Энергия электромагнитных волн. Вектор Умова-Пойнтинга.
- •Основными свойствами электромагнитных волн являются:
- •Интерференция света. Условия пространственной и волновой когерентности световых волн. Расчет интерференционной картины от двух когерентных источников.
- •Интерференция света в тонких пленках. Кольца Ньютона.
- •Интерференция света в тонких пленках.
- •Дифракции света. Принцип Гюйгенса-Френеля. Метод зон Френеля.
- •Дисперсия света. Области нормальной и аномальной дисперсии света. Классическая электронная теория дисперсии света.
- •Связь дисперсии света с поглощением. Рассеяние света. Закон Бугера. Рэлеевское рассеяние.
- •Явление двойного лучепреломления. Закон Малюса. Искусственная оптическая анизотропия.
- •Тепловое излучение. Абсолютно черное тело. Закон Кирхгофа. Закон Стефана-Больцмана.
- •Давление света. Эффект Комптона.
- •Волновые свойства микрочастиц. Модель атома водорода по Бору. Постулаты Бора. Корпускулярно-волновой дуализм свойств вещества и его опытное обоснование.
- •Гипотеза де Бройля. Опыты по дифракции электронных пучков. Соотношение неопределенностей Гейзенберга.
- •Простейшие случаи движения микрочастиц. Волновая функция и ее статистический смысл. Принцип причинности в квантовой механике. Общее уравнение Шредингера.
- •Стационарные состояния Уравнение Шредингера дня стационарных состояний. Движение свободной частицы.
- •Частица в одномерной потенциальной яме. Гармонический осциллятор. Прохождение частицы через потенциальный барьер.
- •Строение атома. Атом водорода в квантовой механике. Главное орбитальное и магнитное квантовые числа. Опыт Штерна и Герлаха. Спин электрона. Спиновое квантовое число
- •Принцип Паули. Распределение электронов в атоме по состояниям. Периодическая система элементов Менделеева.
Дисперсия света. Области нормальной и аномальной дисперсии света. Классическая электронная теория дисперсии света.
Дисперсия света – это зависимость показателя преломления вещества от частоты световой волны . Нормальная дисперсия — с уменьшением длины волны показатель преломления увеличивается. Вблизи линий и полос поглощения наоборот (аномальная дисперсия).
Аномальная дисперсия наблюдается в областях частот, соответствующих полосам интенсивного поглощения света в данной среде. Например, у обычного стекла в инфракрасной и ультрафиолетовой частях спектра наблюдается аномальная дисперсия.
n=f(лямбда)
следствие дисперсии - разложение пучка белого света при прохождении его через призму.
из теории максвела следует, что n=sqrt(e*мю)
в теории лоренца дисперсия света рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами, входящих в состав в-ва и соверш вынужденные колебания в переменном электромагнитном поле.
n**2=1+P/(e*E)
Связь дисперсии света с поглощением. Рассеяние света. Закон Бугера. Рэлеевское рассеяние.
Рассеяние света — рассеяние электромагнитных волн видимого диапазона при их взаимодействии с веществом. При этом происходит изменение пространственного распределения, частоты, поляризации оптического излучения, хотя часто под рассеянием понимается только преобразование углового распределения светового потока.
Пусть
и
—
частоты падающего и рассеянного света.
Тогда
Если
— упругое рассеяние
Если
— неупругое рассеяние
— стоксово рассеяние
— антистоксово рассеяние
Зако́н Бугера — Ламберта — Бера — физический закон, определяющий ослабление параллельногомонохроматического пучка света при распространении его в поглощающей среде.
Закон выражается следующей формулой:
,
где
— интенсивность входящего
пучка,
—
толщина слоя вещества, через которое
проходит свет,
— показатель
поглощения (не
путать с безразмерным показателем
поглощения
,
который связан с
формулой
,
где
—
длина волны).
Показатель поглощения характеризует свойства вещества и зависит от длины волны λ поглощаемого света. Эта зависимость называется спектром поглощения вещества.
Рэлеевское рассеяние — когерентное рассеяние света без изменения длины волны (называемое также упругим рассеянием) на частицах, неоднородностях или других объектах, когда частота рассеиваемого света существенно меньше собственной частоты рассеивающего объекта или системы. Эквивалентная формулировка: рассеяние света на объектах, размеры которых меньше его длины волны. Названо в честь британского физика лорда Рэлея, установившего зависимость интенсивности рассеянного света от длины волны в 1871 году[1]. В широком смысле также применяется при описании рассеяния в волновых процессах различной природы.
Поляризация света. Естественный и поляризованный свет. Частично поляризованный свет: степень поляризации света. Поляризация света при отражении и преломлении. Закон Брюстера.
Поляризация света.
Свет — со всевозможными равновероятными ориентациями вектора Е называетсяестественным.
Свет в котором направления колебаний светового вектора каким либо образом упорядочены, называется
Плоскостью поляризации называется плоскость проходящая через направление колебаний светового вектора плоскополяризованной волны и направленияе распостранения этой волны.
Степенью поляризации называется величина
где Imax Imin — макс. и мин. интенсивности света, соответствующие двум взаимно перпендикулярным компонентам вектора Е
Поляризация при отражении и преломлении света на границе двух диэлектрических сред.
если естественный свет падает на границу раздела двух диэлектриков то часть его отражается а часть преломляется и распостраняется во второй среде. В отражённом луче преобладают колебания перпендикулярные плоскости падения, в преломлённом - паралельные плоскости падения. Степень поляризации зависит от угла падения лучей и показателя преломления. При tg iB = n21 отражённый луч является плоскополяризованным.
анизотропность зависимость физических свойств от направления.
Направление в оптически анизотропном кристалле, по которому луч распостраняется не испытывая двойного лучепреломления называется оптической осью кристалла. Кристаллы в зависимости от их симметрии бывают одноосные и двуосные. если на крисстал исландского шпата направить пучок света то из крисстала выйдут два пространственно разделённых луча паралельных друг другу и падающему лучу. Вышедшие из крисстала лучи плоско поляризованы во взаимно перпендикулярных направлениях.
Для получения поляризованного света используются призмы и поляроиды. Призмы делятся на два класса: 1) поляризационные призмы — дающие только плоскополяризованный луч, 2) двоякопреломляющие призмы — дающие два поляризованных во взаимно перпендикулярных направлениях луча. Примером поляроида может служить тонкая плёнка из целлулоида, в которую вкраплены кристаллики герапатита. Такая плёнка уже при толщине 0,1 мм полностью поглощает обыкновенные лучи видимой области спектра.
Зако́н Брю́стера — закон оптики, выражающий связь показателей преломления двух диэлектриков с таким углом падения света, при котором свет, отражённый от границы раздела диэлектриков, будет полностью поляризованным в плоскости, перпендикулярной плоскости падения. При этом преломлённый луч частично поляризуется в плоскости падения, и его поляризация достигает наибольшего значения (но не 100%, поскольку от границы отразится лишь часть света, поляризованного перпендикулярно к плоскости падения, а оставшаяся часть войдёт в состав преломлённого луча). Угол падения, при котором степень поляризации максимальна, называется углом Брюстера[1]. Легко установить, что при падении под углом Брюстера отражённый и преломлённый лучи взаимно перпендикулярны.
Это явление оптики названо по имени шотландского физика Дэвида Брюстера, открывшего его в 1815 году.
Закон Брюстера записывается в виде: