- •© Фгбоувпо Мурманский государственный технический университет 2014
- •Оглавление
- •Предисловие
- •Краткие теоретические сведения
- •1. Основная классификация электроизмерительных приборов
- •1.1. Краткое описание приборов и их принципа действия
- •1.2. Общие элементы приборов
- •2. Общие свойства приборов
- •2.1. Классы точности электроизмерительных приборов
- •2.2. Цена деления шкалы
- •2.3. Определение внутреннего сопротивления прибора
- •Часть 1. «Электростатика. Постоянный ток» лабораторная работа № 3
- •Приборы и материалы
- •1.Теоретические сведения Основные понятия и законы
- •Электрический ток
- •Электрическая цепь постоянного тока
- •Электрическое сопротивление
- •Закон Ома для однородного участка цепи
- •Закон Ома в дифференциальной форме
- •Последовательное и параллельное соединение проводников
- •Гальванометр, амперметр и вольтметр. Схемы их включения
- •1.8. Шунт и добавочное сопротивление
- •Теория лабораторной работы
- •Часть 1. Использование гальванометра в качестве амперметра
- •Измерения и обработка результатов Расчет шунта
- •Часть 2. Использование гальванометра в качестве вольтметра
- •Расчет добавочного сопротивления
- •Контрольные вопросы
- •1.Теоретические сведения Основные понятия и законы
- •1.1. Электрический ток
- •1.2. Электрическая цепь постоянного тока
- •1.3. Источник постоянного тока
- •1.4. Сторонние силы
- •1.5. Внутреннее сопротивление источника тока
- •1.6. Электродвижущая сила
- •1.7. Соединение источников тока
- •1 Рис. 11. .8. Напряжение на неоднородном участке цепи
- •1.9. Закон Ома для замкнутой цепи
- •1.10. Закон Джоуля – Ленца
- •1.11. Работа и мощность постоянного тока в замкнутой цепи
- •1.12. Кпд источника тока
- •1.13. Дифференциальные выражения для электрической мощности
- •Пример: Мощность некоторых электрических приборов
- •1.14. Требования к линиям электропередач
- •Теория лабораторной работы
- •Измерения и обработка результатов
- •Контрольные вопросы
- •Теоретические сведения Основные понятия и законы
- •Электрический ток
- •Электрическая цепь постоянного тока
- •1.3. Электрическое сопротивление
- •Закон Ома для однородного участка цепи
- •Последовательное и параллельное соединение проводников
- •Измерение сопротивления
- •Правила Кирхгофа
- •Мост Уитстона
- •Условие баланса моста
- •Разновидности мостов
- •Теория лабораторной работы
- •Измерения и обработка результатов
- •Контрольные вопросы
- •Теоретические сведения Основные понятия и законы
- •Электронная эмиссия. Работа выхода электрона из металла
- •Контактные явления
- •Контактная разность потенциалов с точки зрения классической электронной теории
- •1.5. Контактная разность потенциалов с точки зрения зонной (квантовой) теории твёрдого тела
- •Р Рис. 4. Азличная зависимость от температуры контактной разности потенциалов
- •Фононное увлечение
- •1.6. Законы Вольты
- •1.7. Эффект Зеебека. Термоэлектрические явления
- •1.8. Объяснение эффекта Зеебека с точки зрения классической теории
- •1.9. Объяснение эффекта Зеебека с точки зрения зонной теории твёрдого тела
- •1.10. Термопара
- •Применение термопар
- •Преимущества термопар
- •Недостатки термопар
- •1.9. Эффект Пельтье
- •Теория лабораторной работы
- •Измерения и обработка результатов
- •Контрольные вопросы
- •Теоретические сведения Основные понятия и закон
- •Проводники
- •Основы электронной теории проводимости металлов
- •Электрическое сопротивление металлов
- •На практике часто сопротивления измеряют тысячами Ом – килоомами (кОм) или миллионами (мОм) – мегаомами (мОм).
- •Электропроводимость
- •Зависимость сопротивления проводников от температуры
- •Сверхпроводимость
- •Недостатки электронной теории проводимости
- •Теория лабораторной работы
- •Измерения и обработка результатов
- •Контрольные вопросы
- •Теоретические сведения Основные понятия и законы
- •Полупроводники
- •Проводимость полупроводников
- •Механизм электрической проводимости
- •Донорная примесь
- •Акцепторная примесь
- •Зависимость сопротивления полупроводников от температуры
- •Основы зонной теории твёрдого тела
- •2.Теория лабораторной работы
- •Измерения и обработка результатов
- •Контрольные вопросы
- •Часть 2. «Электромагнетизм»
- •Теоретические сведения Основные понятия и законы
- •Магнитное поле и его характеристики
- •Явление электромагнитной индукции
- •Закон Фарадея
- •Векторная форма закона Фарадея
- •Явление самоиндукции
- •Индуктивность
- •Соленоид
- •Индуктивность соленоида
- •2.Теория лабораторной работы измерения и обработка результатов
- •Измерение и обработка результатов
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 12
- •Приборы и материалы
- •Теоретические сведения Основные понятия и законы
- •Магнитное поле и его характеристики
- •Магнитное поле Земли
- •Величины, характеризующие магнитное поле Земли
- •2.Теория лабораторной работы
- •Измерения и обработка результатов
- •Контрольные вопросы
- •Теоретические сведения Основные понятия и законы
- •Магнитное поле и его характеристики
- •Сила Лоренца
- •Полная сила
- •Магнетрон Магнетрон – это мощная электронная лампа, генерирующая микроволны при взаимодействии потока электронов с магнитным полем.
- •2.Теория лабораторной работы
- •Измерения и обработка результатов
- •Контрольные вопросы
- •Теоретические сведения Основные понятия и законы
- •Понятие о магнитном поле и его некоторые характеристики
- •Магнитное поле в веществе. Магнетики
- •Магнитный момент атома
- •Намагниченность
- •Ферромагнетизм
- •Устройство и принцип работы электронного осциллографа
- •2.Теория лабораторной работы
- •Выполнение работы
- •Контрольные вопросы
- •Теоретические сведения Основные понятия и законы
- •Понятие о магнитном поле и его некоторые характеристики
- •Магнитное поле в веществе. Магнетики
- •Магнитный момент атома
- •Намагниченность
- •Диамагнетизм и парамагнетизм
- •Ферромагнетизм
- •Магнитная восприимчивость
- •Точка Кюри
- •2.Теория лабораторной работы
- •Измерения и обработка результатов
- •Контрольные вопросы
- •Теоретические сведения Основные понятия и законы
- •Понятие о колебаниях
- •Все колебательные процессы – по характеру взаимодействия с окружающей средой подразделяются:
- •Гармонические колебания
- •Сложение колебаний
- •Математическое выражение для кривой Лиссажу
- •2.Теория лабораторной работы
- •Измерения и обработка результатов
- •Выполнение работы
- •Контрольные вопросы
- •Литература
Индуктивность соленоида
Индуктивность соленоида выражается следующим образом:
,
где
–
объём соленоида,
– длина проводника, намотанного на
соленоид,
– длина соленоида,
– диаметр витка.
Без использования магнитного материала плотность магнитного потока в пределах катушки является фактически постоянной и равна:
,
где − магнитная проницаемость вакуума, − число витков, − сила тока и − длина катушки. Пренебрегая краевыми эффектами на концах соленоида, получим, что потокосцепление через катушку равно плотности потока , умноженному на площадь поперечного сечения и число витков :
,
Отсюда следует формула для индуктивности соленоида:
,
эквивалентная предыдущим двум формулам.
2.Теория лабораторной работы измерения и обработка результатов
Соленоид характеризуется числом витков , длиной или числом витков на единицу длины . Соленоид можно считать бесконечным, если его длина много больше его диаметра. В этом случае магнитное поле практически все находится внутри соленоида и направлено вдоль его оси. Найдём выражение для индукции магнитного поля соленоида, используя выражение для циркуляции вектора (рис.11):
Рис. 11.
.Интеграл по замкнутому контуру можно разбить на четыре интеграла по отдельным частям:
.
Так как, интегралы 2,3 и 4 равны нулю, то
.
Отсюда магнитная индукция внутри бесконечно длинного соленоида:
,
где – ампер – витки на единицу длины соленоида, – магнитная постоянная.
При наличии магнитного сердечника:
,
где – магнитная проницаемость магнетика.
Н
Рис.12.
а практике используются соленоиды конечной длины, для которых условие
не выполняется. Расчеты показывают, что
в этом случае индукция магнитного поля
в соленоиде:
,
где
и
– углы, под которыми из точки наблюдения
виды радиусы ближнего и дальнего концов
соленоида (рис.12) и:
,
.
Максимальное
значение индукции наблюдается при
;
;
Из
приведенных уравнений следует, что В
монотонно убывает от центра соленоида
к краям. Поток вектора
через сечение соленоида равен:
=
Коэффициент
называется индуктивностью бесконечного
соленоида и измеряется в генри (Гн).
Индуктивность соленоида конечной длины
и радиуса
определятся с учетом коэффициентов
размагничивания
.
|
|
(1) |
|||||
|
0,1 |
0,5 |
1 |
5 |
10 |
||
|
0,2 |
0,5 |
0,6 |
0,9 |
1 |
||
Соленоиды с железным сердечником имеют большую индуктивность и находят применение в цепях переменного тока.
Р
Рис. 13.
аспределение магнитного поля в данной работе исследуется с помощью подвижной измерительной катушки, связанной с баллистическим гальванометром (рис. 13)
При замыкании кнопки
магнитный поток нарастает от 0 до
.
Согласно закону электромагнитной
индукции в цепи измерительной катушки
возникает электродвижущая сила
и обусловленный ею индукционный ток:
,
где – суммарное сопротивление измерительной цепи.
За время нарастания магнитного потока от 0 до по цепи измерительной катушки пройдет заряд:
,
где
– магнитный поток через один виток,
– число витков в измерительной катушке.
Отсюда искомая величина
магнитной индукции:
.
Знак «–», в данном случае, означает, что «зайчик» гальванометра отклонится в сторону, противоположную, принятой за положительное отклонение.
Можно считать:
,
где
-
емкость баллистического гальванометра
и
=
,
где обозначим:
(2)
Размыкание ключа приводит к изменению магнитного потока до нуля.
В этом случае гальванометр дает отброс по величине близкой к , но противоположного знака. Таким образом, определяя значения отклонений даваемых баллистическим гальванометром при замыкании и размыкании цепи соленоида, можно определить значение магнитной индукции на оси соленоида.
