Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лр эл и маг Гнатюк, Мурашова.docx
Скачиваний:
6
Добавлен:
01.05.2025
Размер:
2.29 Mб
Скачать
    1. Зависимость сопротивления полупроводников от температуры

С повышением температуры возрастает число разрывов ковалентных связей и увеличивается количество свободных электронов и дырок в кристаллах чистых полупроводников, а, следовательно, возрастает удельная электропроводность и уменьшается удельное сопротивление чистых полупроводников. График зависимости удельного сопротивления чистого полупроводника от температуры приведен на рис. 8.

К

Рис. 8.

роме нагревания, разрыв ковалентных связей и, как следствие, возникновение собственной проводимости полупроводников и уменьшение удельного сопротивления могут быть вызваны освещением (фотопроводимость полупроводника), а также действием сильных электрических полей.

Зависимость электрического сопротивления полупроводниковых материалов от температуры используется в специальных полупроводниковых приборах – терморезисторах.

    1. Основы зонной теории твёрдого тела

Зонная теория твёрдого тела квантовомеханическая теория движения электронов в твёрдом теле.

В соответствии с квантовой механикой свободные электроны могут иметь любую энергию – их энергетический спектр непрерывен. Электроны, принадлежащие изолированным атомам, имеют определённые дискретные значения энергии. В твёрдом теле энергетический спектр электронов существенно иной, он состоит из отдельных разрешённых энергетических зон, разделённых зонами запрещённых энергий.

Образование энергетических зон в кристаллах

Согласно постулатам Бора, в изолированном атоме энергия электрона может принимать строго дискретные значения (также говорят, что электрон находится на одной из орбиталей).

В случае нескольких атомов, объединенных химической связью (например, в молекуле), электронные орбитали расщепляются в количестве, пропорциональном числу атомов, образуя так называемые молекулярные орбитали. При дальнейшем увеличении системы до макроскопического кристалла (число атомов более ), количество орбиталей становится очень большим, а разница энергий электронов, находящихся на соседних орбиталях, соответственно очень маленькой, энергетические уровни расщепляются до практически непрерывных дискретных наборов – энергетических зон.

Энергетическая ширина расщепления атомного энергетического уровня растет с уменьшением расстояния между соседними атомами . Все подуровни одного атомного энергетического уровня образуют разрешенную энергетическую зону, где существуют стационарные состояния электрона. Соседние энергетические зоны отделены друг от друга запрещенными энергетическими зонами4, где нет стационарных состояний электрона. Для кристалла с линейным размером см энергетическая ширина разрешенных и запрещенных зон , расстояние между соседними подуровнями в разрешенной зоне эВ. С увеличением энергии ширина зон обычно растет.

Наивысшая из разрешённых энергетических зон в полупроводниках и диэлектриках, в которой при температуре 0 К все энергетические состояния заняты электронами, называется валентной зоной, следующая за ней – зоной проводимости. В металлах зоной проводимости называется наивысшая разрешённая зона, в которой находятся электроны при температуре 0 К.

Зонная структура полупроводников

П

Рис. 9.

олупроводниками являются вещества,
ширина запрещённой зоны которых составляет порядка 3 х электрон-вольт (эВ).

Электрические и оптические свойства полупроводников связаны с тем, что заполненные электронами состояния (уровни энергии) отделены от вакантных состояний запрещённой зоной, в которой электронные состояния отсутствуют (рис. 9). Примеси и дефекты структуры приводят к появлению состояний в запрещённой зоне, но этих состояний сравнительно мало, так что понятие запрещённой зоны сохраняет смысл. Высшая целиком заполненная зона наз. валентной, следующая разрешённая, но пустая зона – зоной проводимости.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]