
- •Часть первая. Общие сведения о выполнении графических работ
- •Глава 1. Технические средства и приемы выполнения графических работ
- •§ 1. Общие сведения
- •§2. Материалы
- •§ 3. Инструменты
- •§ 4. Принадлежности и приборы
- •§ 5. Графические автоматы
- •§ 6. Методы выполнения графических работ
- •Вопросы для самопроверки
- •Глава 2. Оформление чертежей
- •§ 7. Общие сведения
- •§ 8. Форматы
- •§ 9. Основная надпись
- •§ 10. Масштабы
- •§ 11. Линии
- •§ 12. Надписи на чертежах
- •§ 13. Основные правила нанесения размеров на чертеже
- •Вопросы для самопроверки
- •Глава 3. Некоторые геометрические построения
- •§ 14. Общие сведения
- •§ 15. Деление отрезка прямой
- •§ 16. Деление окружности
- •§ 17. Скругление углов
- •§ 18. Сопряжение дуг окружностей прямой линией
- •§ 19. Сопряжение двух дуг окружностей третьей дугой
- •§ 20. Сопряжение дуги окружности и прямой линии второй дугой
- •§21. Овалы
- •22. Лекальные кривые
- •Вопросы для самопроверки
- •Часть вторая. Теоретические основы построения чертежа
- •Глава 4. Общие понятия об образовании чертежа
- •§ 23. Определение чертежа
- •§ 24. Основные элементы геометрического пространства
- •§ 25. Геометрические тела и их отображение
- •Вопросы для самопроверки
- •Глава 5. Изображение объектов трехмерного пространства
- •§ 26. Метод проекций
- •§ 27. Способы проецирования
- •§ 28. Свойства проекций
- •§ 29. Ортогональные проекции
- •§ 30. Аксонометрические проекции
- •§31. Проекции с числовыми отметками
- •Вопросы для самопроверки
- •Глава 6. Проекции точки. Комплексный чертеж
- •§ 32. Комплексный чертеж точки
- •§ 33. Элементы трехпроекционного комплексного чертежа точки
- •§ 34. Положение точки в пространстве трехмерного угла
- •§ 35. Конкурирующие точки
- •36. Замена плоскостей проекций
- •§ 37. Прямоугольные координаты точек
- •Вопросы для самопроверки
- •Глава 7. Изображение линий на чертеже
- •§ 38. Образование линий
- •§ 39. Комплексный чертеж прямой линии
- •§ 40. Расположение прямой относительно плоскостей проекций
- •§ 41. Взаимное расположение двух прямых
- •§ 42. Определение натуральной величины отрезка прямой линии
- •§ 43. Кривые линии
- •§ 44. Взаимное расположение точки и линии
- •Вопросы для самопроверки
- •Глава 8. Поверхности
- •§ 45. Образование поверхностей
- •§ 46. Изображение плоскости на чертеже
- •§ 47. Расположение плоскости относительно плоскостей проекций. Взаимное расположение двух плоскостей
- •§ 48. Особые линии в плоскости
- •§ 49. Взаимное расположение точки, прямой и плоскости
- •§ 50. Коническая и цилиндрическая поверхности
- •§ 51. Торсовые поверхности
- •§ 52. Гранные поверхности
- •§ 53. Винтовые поверхности
- •§ 54. Поверхности вращения
- •§ 55. Точка и линия на поверхности
- •Вопросы для самопроверки
- •Глава 9. Преобразование комплексного чертежа
- •§56. Общие сведения о преобразовании комплексного чертежа
- •§ 57. Способ плоскопараллельного перемещения
- •§ 58. Способ замены плоскостей проекций
- •§ 59. Способ вращения
- •Вопросы для самопроверки
- •Глава 10. Позиционные задачи
- •§ 60. Общие сведения о позиционных задачах
- •§ 61. Пересечение прямой с плоскостью
- •§ 62. Пересечение двух плоскостей
- •§ 63. Пересечение поверхности с плоскостью. Тела с вырезами
- •§ 64. Пересечение поверхностей
- •65. Построение линии пересечения поверхностей способом вспомогательных секущих плоскостей
- •§ 66. Построение линии пересечения поверхностей способом вспомогательных сфер
- •§ 67. Особые случаи построения линии пересечения двух поверхностей вращения
- •Вопросы для самопроверки
- •Глава 11. Метрические задачи
- •§ 68. Общие сведения о метрических задачах
- •§ 69. Определение истинной величины расстояний
- •§ 70. Определение истинной величины углов
- •§ 71. Определение истинной величины плоской фигуры
- •§ 72. Построение разверток поверхностей
- •§ 73. Развертки пирамидальных и конических поверхностей
- •§ 74. Развертки призматических и цилиндрических поверхностей
- •Вопросы для самопроверки
- •Глава 12. Аксонометрические проекции
- •§ 75. Общие сведения об аксонометрических проекциях
- •§ 76. Виды аксонометрических проекций
- •§ 77. Прямоугольная изометрия
- •§ 78. Прямоугольная диметрия
- •Вопросы для самопроверки
- •Основы машиностроительного черчения
- •Глава 13. Изображение предметов
- •§ 79. Общие сведения
- •§ 80. Построение видов на чертеже
- •§ 81. Построение третьего вида предмета по двум данным
- •§ 82. Выполнение разрезов на чертеже
- •§ 83. Выполнение сечений на чертеже
- •§ 84. Выносные элементы
- •§ 85. Условности и упрощения при изображении предмета
- •§ 86. Построение наглядного изображения предмета
- •Вопросы для самопроверки
- •Глава 14. Изображение соединений деталей
- •§ 87. Общие сведения
- •§ 88. Разъемные соединения
- •§ 89. Неразъемные соединения
- •§ 90. Специальные соединения деталей
- •Вопросы для самопроверки
- •Глава 15. Рабочие чертежи деталей
- •§ 91. Общие сведения о выполнении и оформлении рабочих чертежей деталей
- •§ 92. Нанесение обозначений материалов на рабочих чертежах деталей
- •§ 93. Нанесение размеров на рабочих чертежах деталей
- •§ 94. Обозначение шероховатости поверхностей на рабочих чертежах деталей
- •§ 95. Выполнение чертежей оригинальных деталей
- •§ 96. Выполнение эскизов деталей
- •§ 97. Выполнение технических рисунков деталей
- •Вопросы для самопроверки
- •Глава 16. Изображение изделий
- •§ 98. Общие сведения об изделиях
- •§ 99. Выполнение чертежа общего вида
- •§ 100. Сборочный чертеж
- •§ 101. Выполнение спецификации к сборочному чертежу
- •§ 102. Порядок выполнения сборочного чертежа
- •§ 103. Чтение и деталирование сборочного чертежа
- •§ 104. Выполнение схем
- •Список литературы
§ 66. Построение линии пересечения поверхностей способом вспомогательных сфер
При построении линии пересечения поверхностей особенности пересечения соосных поверхностей вращения позволяют в качестве вспомогательных поверхностей-посредников использовать сферы, соосные с данными поверхностями.
К соосным поверхностям вращения относятся поверхности, имеющие общую ось вращения. На рис. 134 изображены соосные цилиндр и сфера (рис. 134, а), соосные конус и сфера (рис. 134, б) и соосные цилиндр и конус (рис. 134, в).
Соосные поверхности вращения всегда пересекаются по окружностям, плоскости которых перпендикулярны оси вращения. Этих общих для обеих поверхностей окружностей столько, сколько существует точек пересечения очерковых линий поверхностей. Поверхности на рис. 134 пересекаются по окружностям, создаваемым точками 1 и 2 пересечения их главных меридианов.
Вспомогательная сфера-посредник пересекает каждую из заданных поверхностей по окружности, в пересечении которых получаются точки, принадлежащие и другой поверхности, а значит, и линии пересечения.
Рис. 134
Если оси поверхностей пересекаются, то вспомогательные сферы проводят из одного центра-точки пересечения осей. Линию пересечения поверхностей в этом случае строят способом вспомогательных концентрических сфер.
При построении линии пересечения поверхностей для использования способа вспомогательных концентрических сфер необходимо выполнение следующих условий:
1) пересечение поверхностей вращения;
2) оси поверхностей — пересекающиеся прямые — параллельны одной из плоскостей проекций, т. е. имеется общая плоскость симметрии;
3) нельзя использовать способ вспомогательных секущих плоскостей, так как они не дают графически простых линий на поверхностях.
Обычно способ вспомогательных сфер используется в сочетании со способом вспомогательных секущих плоскостей. На рис. 135 построена линия пересечения двух конических поверхностей вращения с пересекающимися во фронтальной плоскости уровня Ф (Ф1) осями вращения. Значит, главные меридианы этих поверхностей пересекаются и дают в своем пересечении точки видимости линии пересечения относительно плоскости П2 или самую высокую А и самую низкую В точки. В пересечении горизонтального меридиана h и параллели h', лежащих в одной вспомогательной секущей плоскости Г(Г2), определены точки видимости С и D линии пересечения относительно плоскости П1. Использовать вспомогательные секущие плоскости для построения дополнительных точек линии пересечения нецелесообразно, так как плоскости, параллельные Ф, будут пересекать обе поверхности по гиперболам, а плоскости, параллельные Г, будут давать в пересечении поверхностей окружности и гиперболы. Вспомогательные горизонтально или фронтально проецирующие плоскости, проведенные через вершину одной из поверхностей, будут пересекать их по образующим и эллипсам. В данном примере выполнены условия, позволяющие применение вспомогательных сфер для построения точек линии пересечения. Оси поверхностей вращения пересекаются в точке О (О1; О2), которая является центром вспомогательных сфер, радиус сферы изменяется в пределах
Rmin < R < Rmах. Радиус максимальной сферы определяется расстоянием от центра О наиболее удаленной точки В (Rmax = О2В2), а радиус минимальной сферы определяется как радиус сферы, касающейся одной поверхности (по окружности h2) и пересекающей другую (по окружности h3).
Плоскости этих окружностей перпендикулярны осям вращения поверхностей. В пересечении этих окружностей получаем точки Е и F, принадлежащие линии пересечения поверхностей:
Рис. 135
h22 ∩ h32 = E2(F2); Е2Е1 || А2А1;
Е2Е1 ∩ h21 =E1; F2F ∩ h 21 = F1
Промежуточная сфера радиуса R пересекает поверхности по окружностям h4 и h5, в пересечении которых находятся точки Ми N:
h42 ∩ h52 = M2(N2); M2M1 || А2А1,
М2М1 ∩ h41 = М1; N2N1∩ h41 = N1
Соединяя одноименные проекции построенных точек с учетом их видимости, получаем проекции линии пересечения поверхностей.