
- •Часть первая. Общие сведения о выполнении графических работ
- •Глава 1. Технические средства и приемы выполнения графических работ
- •§ 1. Общие сведения
- •§2. Материалы
- •§ 3. Инструменты
- •§ 4. Принадлежности и приборы
- •§ 5. Графические автоматы
- •§ 6. Методы выполнения графических работ
- •Вопросы для самопроверки
- •Глава 2. Оформление чертежей
- •§ 7. Общие сведения
- •§ 8. Форматы
- •§ 9. Основная надпись
- •§ 10. Масштабы
- •§ 11. Линии
- •§ 12. Надписи на чертежах
- •§ 13. Основные правила нанесения размеров на чертеже
- •Вопросы для самопроверки
- •Глава 3. Некоторые геометрические построения
- •§ 14. Общие сведения
- •§ 15. Деление отрезка прямой
- •§ 16. Деление окружности
- •§ 17. Скругление углов
- •§ 18. Сопряжение дуг окружностей прямой линией
- •§ 19. Сопряжение двух дуг окружностей третьей дугой
- •§ 20. Сопряжение дуги окружности и прямой линии второй дугой
- •§21. Овалы
- •22. Лекальные кривые
- •Вопросы для самопроверки
- •Часть вторая. Теоретические основы построения чертежа
- •Глава 4. Общие понятия об образовании чертежа
- •§ 23. Определение чертежа
- •§ 24. Основные элементы геометрического пространства
- •§ 25. Геометрические тела и их отображение
- •Вопросы для самопроверки
- •Глава 5. Изображение объектов трехмерного пространства
- •§ 26. Метод проекций
- •§ 27. Способы проецирования
- •§ 28. Свойства проекций
- •§ 29. Ортогональные проекции
- •§ 30. Аксонометрические проекции
- •§31. Проекции с числовыми отметками
- •Вопросы для самопроверки
- •Глава 6. Проекции точки. Комплексный чертеж
- •§ 32. Комплексный чертеж точки
- •§ 33. Элементы трехпроекционного комплексного чертежа точки
- •§ 34. Положение точки в пространстве трехмерного угла
- •§ 35. Конкурирующие точки
- •36. Замена плоскостей проекций
- •§ 37. Прямоугольные координаты точек
- •Вопросы для самопроверки
- •Глава 7. Изображение линий на чертеже
- •§ 38. Образование линий
- •§ 39. Комплексный чертеж прямой линии
- •§ 40. Расположение прямой относительно плоскостей проекций
- •§ 41. Взаимное расположение двух прямых
- •§ 42. Определение натуральной величины отрезка прямой линии
- •§ 43. Кривые линии
- •§ 44. Взаимное расположение точки и линии
- •Вопросы для самопроверки
- •Глава 8. Поверхности
- •§ 45. Образование поверхностей
- •§ 46. Изображение плоскости на чертеже
- •§ 47. Расположение плоскости относительно плоскостей проекций. Взаимное расположение двух плоскостей
- •§ 48. Особые линии в плоскости
- •§ 49. Взаимное расположение точки, прямой и плоскости
- •§ 50. Коническая и цилиндрическая поверхности
- •§ 51. Торсовые поверхности
- •§ 52. Гранные поверхности
- •§ 53. Винтовые поверхности
- •§ 54. Поверхности вращения
- •§ 55. Точка и линия на поверхности
- •Вопросы для самопроверки
- •Глава 9. Преобразование комплексного чертежа
- •§56. Общие сведения о преобразовании комплексного чертежа
- •§ 57. Способ плоскопараллельного перемещения
- •§ 58. Способ замены плоскостей проекций
- •§ 59. Способ вращения
- •Вопросы для самопроверки
- •Глава 10. Позиционные задачи
- •§ 60. Общие сведения о позиционных задачах
- •§ 61. Пересечение прямой с плоскостью
- •§ 62. Пересечение двух плоскостей
- •§ 63. Пересечение поверхности с плоскостью. Тела с вырезами
- •§ 64. Пересечение поверхностей
- •65. Построение линии пересечения поверхностей способом вспомогательных секущих плоскостей
- •§ 66. Построение линии пересечения поверхностей способом вспомогательных сфер
- •§ 67. Особые случаи построения линии пересечения двух поверхностей вращения
- •Вопросы для самопроверки
- •Глава 11. Метрические задачи
- •§ 68. Общие сведения о метрических задачах
- •§ 69. Определение истинной величины расстояний
- •§ 70. Определение истинной величины углов
- •§ 71. Определение истинной величины плоской фигуры
- •§ 72. Построение разверток поверхностей
- •§ 73. Развертки пирамидальных и конических поверхностей
- •§ 74. Развертки призматических и цилиндрических поверхностей
- •Вопросы для самопроверки
- •Глава 12. Аксонометрические проекции
- •§ 75. Общие сведения об аксонометрических проекциях
- •§ 76. Виды аксонометрических проекций
- •§ 77. Прямоугольная изометрия
- •§ 78. Прямоугольная диметрия
- •Вопросы для самопроверки
- •Основы машиностроительного черчения
- •Глава 13. Изображение предметов
- •§ 79. Общие сведения
- •§ 80. Построение видов на чертеже
- •§ 81. Построение третьего вида предмета по двум данным
- •§ 82. Выполнение разрезов на чертеже
- •§ 83. Выполнение сечений на чертеже
- •§ 84. Выносные элементы
- •§ 85. Условности и упрощения при изображении предмета
- •§ 86. Построение наглядного изображения предмета
- •Вопросы для самопроверки
- •Глава 14. Изображение соединений деталей
- •§ 87. Общие сведения
- •§ 88. Разъемные соединения
- •§ 89. Неразъемные соединения
- •§ 90. Специальные соединения деталей
- •Вопросы для самопроверки
- •Глава 15. Рабочие чертежи деталей
- •§ 91. Общие сведения о выполнении и оформлении рабочих чертежей деталей
- •§ 92. Нанесение обозначений материалов на рабочих чертежах деталей
- •§ 93. Нанесение размеров на рабочих чертежах деталей
- •§ 94. Обозначение шероховатости поверхностей на рабочих чертежах деталей
- •§ 95. Выполнение чертежей оригинальных деталей
- •§ 96. Выполнение эскизов деталей
- •§ 97. Выполнение технических рисунков деталей
- •Вопросы для самопроверки
- •Глава 16. Изображение изделий
- •§ 98. Общие сведения об изделиях
- •§ 99. Выполнение чертежа общего вида
- •§ 100. Сборочный чертеж
- •§ 101. Выполнение спецификации к сборочному чертежу
- •§ 102. Порядок выполнения сборочного чертежа
- •§ 103. Чтение и деталирование сборочного чертежа
- •§ 104. Выполнение схем
- •Список литературы
§ 59. Способ вращения
Как уже отмечалось, при преобразовании комплексного чертежа возможно изменение положения заданных геометрических элементов относительно плоскостей проекций при неизменном положении основных плоскостей проекций. Это осуществляется путем вращения этих элементов вокруг некоторой оси до тех пор, пока эти элементы не займут частное положение в исходной системе плоскостей. Такое преобразование комплексного чертежа носит название способа вращения.
В качестве оси вращения в этом случае удобнее всего выбирать проецирующие прямые или прямые уровни, тогда точка будет вращаться в плоскостях, параллельных или перпендикулярных плоскостям проекций.
Рис. 115
Рис. 116
При вращении вокруг горизонтально проецирующей прямой горизонтальная проекция А1 точки А перемещается по окружности, а фронтальная AI — по прямой, перпендикулярной фронтальной проекции оси, являющейся фронтальной проекцией плоскости вращения Г2 (рис. 115). При этом расстояние между горизонтальными проекциями двух точек А и В (рис. 116) при их повороте на один и тот же угол со остается неизменным (А1В1 = A1B1).
Аналогичные выводы можно сделать и для вращения вокруг фронтально проецирующей прямой. При вращении плоской фигуры вокруг оси, перпендикулярной плоскости проекций, проекция ее на эту плоскость не изменяется ни по величине, ни по форме, так как не изменяется наклон плоской фигуры к этой плоскости, а меняется лишь положение этой проекции относительно линии связи. Вторая же проекция на плоскости, параллельной оси вращения, изменяется и по форме, и по величине. Проекции точек на этой плоскости проекций находятся на прямых, перпендикулярных исходным линиям связи. Пользуясь этими свойствами, можно применить для преобразования чертежа способ вращения, не задаваясь изображением оси вращения и не устанавливая величину радиуса вращения. Это — способ плоскопараллельного перемещения, при котором все точки геометрической фигуры перемещаются во взаимно параллельных плоскостях без изменения действительного вида и размеров этой фигуры (рис. 117).
Треугольник ABC занимает общее положение. Первым плоскопараллельным перемещением он поставлен во фронтально проецирующее положение с помощью горизонтали h, которую расположим как фронтально проецирующую прямую в ее плоскости вращения Г || П. При этом ∆А1В1С1 = ∆А1В1С1, а плоскости вращения точек В и С параллельны плоскости Г.
Вторым перемещением АВС расположен параллельно плоскости П1. Без изменения оставлена вырожденная фронтальная проекция треугольника (А2В2C2 = А2В2С2), а новая горизонтальная проекция, дающая истинную величину АВС, получена построением новых горизонтальных проекций точек
Рис. 117
Рис. 118
А1В1 и С1 в результате их вращения в параллельных фронтальный плоскостях уровня (B2 € Ф; B € Ф).
На этом примере построено решение третьей и четвертой исходных задач путем преобразования комплексного чертежа плоскости общего положения способом плоскопараллельного перемещения.
Если в качестве оси вращения взять линию уровня, то истинную величину плоской фигуры общего положения можно построить одним поворотом, т. е. избежать двойного преобразования чертежа, что имело место в замене плоскостей проекций и плоскопараллельном перемещении. На рис. 118 построено изображение ∆АВС (А1В1С1) после поворота его вокруг горизонтали h (С, 1) уровня Г € h. Так как горизонталь проходит через точку С, то последняя неподвижна при вращении треугольника. Нужно повернуть только точки А и В вокруг горизонтали до совмещения с плоскостью Г || П1. Точка А вращается в горизонтально проецирующей плоскости ΣА, перпендикулярной оси вращения. Центр вращения О точки А лежит, на оси вращения. В момент, когда в результате вращения точка А окажется в плоскости Г, т. е. совместится с горизонтальной плоскостью уровня, ее горизонтальная проекция А1 будет удалена от горизонтальной проекции оси вращения h1 на расстояние, равное истинной величине радиуса вращения RА точки А. Натуральную величину RА можно построить как гипотенузу О1А прямоугольного треугольника (см. § 42), одним катетом которого является горизонтальная проекция радиуса A1O1, а вторым — разность высот точек А и О. Построив совмещенную горизонтальную проекцию точки А, легко достроить изображение всего треугольника А1B1C1 в совмещенном с плоскостью Г положении, используя неподвижную точку и плоскость вращения точки В (ΣB1 _|_ h1). Фронтальная проекция АВС выродится в прямую и совместится с проекцией Г2 плоскости совмещения.
Аналогичные действия выполняют при вращении плоской фигуры вокруг ее фронтали. Совмещение в этом случае ведется с фронтальной
плоскостью уровня (Ф || П2), проходящей через ось вращения — фронталь.
Способом вращения могут быть решены и другие задачи, применительно к их условиям.