
- •Часть первая. Общие сведения о выполнении графических работ
- •Глава 1. Технические средства и приемы выполнения графических работ
- •§ 1. Общие сведения
- •§2. Материалы
- •§ 3. Инструменты
- •§ 4. Принадлежности и приборы
- •§ 5. Графические автоматы
- •§ 6. Методы выполнения графических работ
- •Вопросы для самопроверки
- •Глава 2. Оформление чертежей
- •§ 7. Общие сведения
- •§ 8. Форматы
- •§ 9. Основная надпись
- •§ 10. Масштабы
- •§ 11. Линии
- •§ 12. Надписи на чертежах
- •§ 13. Основные правила нанесения размеров на чертеже
- •Вопросы для самопроверки
- •Глава 3. Некоторые геометрические построения
- •§ 14. Общие сведения
- •§ 15. Деление отрезка прямой
- •§ 16. Деление окружности
- •§ 17. Скругление углов
- •§ 18. Сопряжение дуг окружностей прямой линией
- •§ 19. Сопряжение двух дуг окружностей третьей дугой
- •§ 20. Сопряжение дуги окружности и прямой линии второй дугой
- •§21. Овалы
- •22. Лекальные кривые
- •Вопросы для самопроверки
- •Часть вторая. Теоретические основы построения чертежа
- •Глава 4. Общие понятия об образовании чертежа
- •§ 23. Определение чертежа
- •§ 24. Основные элементы геометрического пространства
- •§ 25. Геометрические тела и их отображение
- •Вопросы для самопроверки
- •Глава 5. Изображение объектов трехмерного пространства
- •§ 26. Метод проекций
- •§ 27. Способы проецирования
- •§ 28. Свойства проекций
- •§ 29. Ортогональные проекции
- •§ 30. Аксонометрические проекции
- •§31. Проекции с числовыми отметками
- •Вопросы для самопроверки
- •Глава 6. Проекции точки. Комплексный чертеж
- •§ 32. Комплексный чертеж точки
- •§ 33. Элементы трехпроекционного комплексного чертежа точки
- •§ 34. Положение точки в пространстве трехмерного угла
- •§ 35. Конкурирующие точки
- •36. Замена плоскостей проекций
- •§ 37. Прямоугольные координаты точек
- •Вопросы для самопроверки
- •Глава 7. Изображение линий на чертеже
- •§ 38. Образование линий
- •§ 39. Комплексный чертеж прямой линии
- •§ 40. Расположение прямой относительно плоскостей проекций
- •§ 41. Взаимное расположение двух прямых
- •§ 42. Определение натуральной величины отрезка прямой линии
- •§ 43. Кривые линии
- •§ 44. Взаимное расположение точки и линии
- •Вопросы для самопроверки
- •Глава 8. Поверхности
- •§ 45. Образование поверхностей
- •§ 46. Изображение плоскости на чертеже
- •§ 47. Расположение плоскости относительно плоскостей проекций. Взаимное расположение двух плоскостей
- •§ 48. Особые линии в плоскости
- •§ 49. Взаимное расположение точки, прямой и плоскости
- •§ 50. Коническая и цилиндрическая поверхности
- •§ 51. Торсовые поверхности
- •§ 52. Гранные поверхности
- •§ 53. Винтовые поверхности
- •§ 54. Поверхности вращения
- •§ 55. Точка и линия на поверхности
- •Вопросы для самопроверки
- •Глава 9. Преобразование комплексного чертежа
- •§56. Общие сведения о преобразовании комплексного чертежа
- •§ 57. Способ плоскопараллельного перемещения
- •§ 58. Способ замены плоскостей проекций
- •§ 59. Способ вращения
- •Вопросы для самопроверки
- •Глава 10. Позиционные задачи
- •§ 60. Общие сведения о позиционных задачах
- •§ 61. Пересечение прямой с плоскостью
- •§ 62. Пересечение двух плоскостей
- •§ 63. Пересечение поверхности с плоскостью. Тела с вырезами
- •§ 64. Пересечение поверхностей
- •65. Построение линии пересечения поверхностей способом вспомогательных секущих плоскостей
- •§ 66. Построение линии пересечения поверхностей способом вспомогательных сфер
- •§ 67. Особые случаи построения линии пересечения двух поверхностей вращения
- •Вопросы для самопроверки
- •Глава 11. Метрические задачи
- •§ 68. Общие сведения о метрических задачах
- •§ 69. Определение истинной величины расстояний
- •§ 70. Определение истинной величины углов
- •§ 71. Определение истинной величины плоской фигуры
- •§ 72. Построение разверток поверхностей
- •§ 73. Развертки пирамидальных и конических поверхностей
- •§ 74. Развертки призматических и цилиндрических поверхностей
- •Вопросы для самопроверки
- •Глава 12. Аксонометрические проекции
- •§ 75. Общие сведения об аксонометрических проекциях
- •§ 76. Виды аксонометрических проекций
- •§ 77. Прямоугольная изометрия
- •§ 78. Прямоугольная диметрия
- •Вопросы для самопроверки
- •Основы машиностроительного черчения
- •Глава 13. Изображение предметов
- •§ 79. Общие сведения
- •§ 80. Построение видов на чертеже
- •§ 81. Построение третьего вида предмета по двум данным
- •§ 82. Выполнение разрезов на чертеже
- •§ 83. Выполнение сечений на чертеже
- •§ 84. Выносные элементы
- •§ 85. Условности и упрощения при изображении предмета
- •§ 86. Построение наглядного изображения предмета
- •Вопросы для самопроверки
- •Глава 14. Изображение соединений деталей
- •§ 87. Общие сведения
- •§ 88. Разъемные соединения
- •§ 89. Неразъемные соединения
- •§ 90. Специальные соединения деталей
- •Вопросы для самопроверки
- •Глава 15. Рабочие чертежи деталей
- •§ 91. Общие сведения о выполнении и оформлении рабочих чертежей деталей
- •§ 92. Нанесение обозначений материалов на рабочих чертежах деталей
- •§ 93. Нанесение размеров на рабочих чертежах деталей
- •§ 94. Обозначение шероховатости поверхностей на рабочих чертежах деталей
- •§ 95. Выполнение чертежей оригинальных деталей
- •§ 96. Выполнение эскизов деталей
- •§ 97. Выполнение технических рисунков деталей
- •Вопросы для самопроверки
- •Глава 16. Изображение изделий
- •§ 98. Общие сведения об изделиях
- •§ 99. Выполнение чертежа общего вида
- •§ 100. Сборочный чертеж
- •§ 101. Выполнение спецификации к сборочному чертежу
- •§ 102. Порядок выполнения сборочного чертежа
- •§ 103. Чтение и деталирование сборочного чертежа
- •§ 104. Выполнение схем
- •Список литературы
§ 42. Определение натуральной величины отрезка прямой линии
При решении задач инженерной графики в ряде случаев появляется необходимость в определении натуральной величины отрезка прямой линии. Решить эту задачу можно несколькими способами: способом прямоугольного треугольника, способом вращения, плоскопараллельного перемещения, заменой плоскостей проекций.
Рассмотрим пример построения изображения отрезка в истинную величину на комплексном чертеже способом прямоугольного треугольника. Если отрезок расположен параллельно какой-либо из плоскостей проекций, то на эту плоскость он проецируется в натуральную величину. Если же отрезок представлен прямой общего положения, то на одной из плоскостей проекций нельзя определить его истинную величину (см. рис. 69).
Возьмем отрезок общего положения АВ (A∩П1) и построим его ортогональную проекцию на горизонтальной плоскости проекций (рис. 78, а). В пространстве при этом образуется прямоугольник А1ВВ1, в котором гипотенузой является сам отрезок, одним катетом — горизонтальная проекция этого отрезка, а вторым катетом — разность высот точек А и В отрезка. Так как по чертежу прямой определить разность высот точек ее отрезка не составляет труда, то можно построить по горизонтальной проекции отрезка (рис. 78, б) прямоугольный треугольник, взяв вторым катетом превышение одной точки над второй. Гипотенуза этого треугольника и будет натуральной величиной отрезка АВ.
Аналогичное построение можно сделать на фронтальной проекции отрезка, только в качестве второго катета надо взять разность глубин его концов (рис. 78, в), замеренную на плоскости П1.
Рис. 78
Для определения натуральной величины отрезка прямой можно воспользоваться поворотом ее относительно плоскостей проекций, чтобы она расположилась параллельно одной из них (см. § 36) или вводом новой плоскости проекций (заменой одной из плоскостей проекций) так, чтобы она была параллельна одной из проекций отрезка (см. §§58, 59).
§ 43. Кривые линии
Кривые линии на комплексном чертеже задают своими проекциями, которые строят по проекциям отдельных точек, принадлежащих этой линии. Проекции линий при ортогональном проецировании получают как результат пересечения проецирующих цилиндров с плоскостями проекций (см. § 28); это означает, что проекциями плоских и пространственных кривых линий являются линии плоские. На рис. 79 видно, что секущая m кривой а в общем случае проецируется секущей ее проекции, а касательная f к кривой проецируется касательной к ее проекции.
На комплексном чертеже кривой ее особые точки, к которым относятся точки перегиба, возврата, излома, узловые точки, являются особыми точками и на ее проекции. Это объясняется тем, что особые точки кривых связаны с касательными в этих точках.
Если плоскость кривой занимает проецирующее положение (рис. 80, а), то одна проекция этой кривой имеет форму прямой. У пространственной кривой все ее проекции — кривые линии (рис. 80, б).
Чтобы установить по чертежу, какая задана кривая (плоская или пространственная), необходимо выяснить, принадлежат ли все точки кривой одной плоскости. Заданная на рис. 80, б кривая является пространственной, так как точка D кривой не принадлежит плоскости, определяемой тремя другими точками А, В и Е этой кривой.
Построение и изображение кривых рассматривалось в § 21,22, поэтому приведем пример изображения на чертеже только окружности как плоской кривой и винтовой линии как пространственной кривой.
Окружность — плоская кривая второго порядка, ортогональная проекция которой может быть окружностью и эллипсом (рис. 81, а). Для изображения окружности диаметра d на комплексном чертеже обязательно строят проекции центра О и двух ее диаметров. Удобнее всего строить проекции диаметров, параллельных плоскостям проекций: АВ || П1 CD || П2; CD _|_ П1 (рис. 81, б). Фронтальная проекция окружности — эллипс — определяется малой осью эллипса A1B2 = dcos β и большой осью эллипса С2D2=d
Рис.
79
Рис. 80
Рис. 81
Если плоскость окружности наклонена ко всем основным плоскостям проекций, то все три ее проекции есть эллипсы, которые можно построить по сопряженным диаметрам, являющимся проекциями тех диаметров окружности, которые параллельны плоскостям проекций (см. рис. 37).
Цилиндрическая винтовая линия (гелиса) — пространственная кривая, представляющая собой траекторию точки, выполняющей винтовое движение. Винтовое движение включает в себя равномерное поступательное движение точки по прямой и равномерное вращательное движение этой прямой с точкой вокруг оси i, которой прямая параллельна. Высота p, на которую точка поднимается по прямой за полный оборот, называется шагом винтовой линии (рис. 82). Если ось i винтовой линии перпендикулярна горизонтальной плоскости проекций, то горизонтальная проекция винтовой линии есть окружность, а фронтальная — синусоида.
Для построения фронтальной проекции винтовой линии при заданном диаметре d и шаге р нужно разделить и окружность, и шаг на равное число частей. Построение проекций точки винтовой линии показано на рис. 82. Цилиндрическую винтовую линию можно развернуть
Рис. 82
на плоскость. Развертка ее представляет собой прямую линию с углом подъема а, где tga = P / лd.