
- •Предисловие
- •Лабораторная работа 1 Классификация электроизмерительных приборов
- •1.1. Основные свойства средств измерений
- •1.2. Выбор измерительного прибора
- •1.3. Классификация измерительных приборов
- •2.2. Классификация погрешностей измерений
- •2.3. Вычисление случайных погрешностей измерения
- •Значения коэффициента Стьюдента для различных доверительных вероятностей Рд при различных n
- •2.4. Вычисление систематических погрешностей измерения
- •2.5. Вычисление погрешностей косвенных измерений
- •Расчет погрешности через приращения
- •Расчет погрешности через частные производные
- •Расчет погрешности с помощью логарифмирования
- •2.6. Требования к технике безопасности
- •2.7. Задания на выполнение лр
- •2.8. Порядок выполнения работы
- •3.1. Общее устройство и принцип работы универсального осциллографа
- •3.2. Получение изображения на экране осциллографа
- •3.3. Применение ждущей развертки при наблюдении коротких импульсов
- •3.4. Виды разверток электронного осциллографа и их применение
- •3.5. Требования к технике безопасности
- •3.6. Задание на выполнение лр
- •3.7. Порядок выполнения работы
- •Параметры сигналов I и II
- •3.8. Требования к содержанию и оформлению отчета
- •3.9. Контрольные вопросы и задания
- •Лабораторная работа 4 Измерение частоты методом сравнения
- •4.1. Основные понятия
- •4.2. Метод перезарядки конденсатора
- •4.3. Резонансный метод
- •4.4. Метод сравнения
- •Гетеродинный способ
- •Осциллографический способ
- •4.5. Измерение частоты методом сравнения в режиме синусоидальной развертки
- •4.6. Требования к технике безопасности
- •4.7. Задание на выполнение лр
- •4.8. Порядок выполнения работы
- •5.2. Измерение частоты методом дискретного счета
- •5.3. Измерение периода периодического сигнала методом дискретного счета
- •5.4. Измерение интервалов времени методом дискретного счета
- •5.5. Требования к технике безопасности
- •5.6. Задание на выполнение лр
- •5.7. Порядок выполнения работы
- •5.8. Требования к содержанию и оформлению отчета
- •5.9. Контрольные вопросы и задания
- •Лабораторная работа 6 Измерение частоты методом дискретного счета на свч
- •6.1. Измерение сверхвысоких частот
- •6.2. Принцип действия частотомера ч3-68
- •6.3. Структурная схема прибора
- •6.4. Измерение частоты в диапазоне 10 кГц … 100 мГц
- •6.5. Контроль работоспособности частотомера
- •6.6. Измерение частоты в диапазоне 0,1 … 18 гГц
- •6.7. Требования к технике безопасности
- •6.8. Задание на выполнение лр
- •6.9. Порядок выполнения работы
- •Показания частотомера ч3-68 в диапазоне 20 кГц … 2 мГц
- •Показания частотомера ч3-68 в свч-диапазоне
- •6.10. Требования к содержанию и оформлению отчета
- •6.11. Контрольные вопросы и задания
- •Лабораторная работа 7 Измерение фазового сдвига осциллографическим методом
- •7.1. Основные понятия
- •7.2. Измерение фазового сдвига осциллографическим методом
- •7.3. Требования к технике безопасности
- •7.4. Задание на выполнение лр
- •7.5. Порядок выполнения работы
- •Результаты измерений и расчетов
- •8.1. Основные понятия
- •8.2. Метод выпрямления
- •8.3. Осциллографический метод
- •8.4. Требования к технике безопасности
- •8.5. Задание на выполнение лр
- •8.6. Порядок выполнения работы.
- •8.7. Требования к содержанию и оформлению отчета
- •8.8. Контрольные вопросы и задания
- •Лабораторная работа 9 Исследования зависимости девиации частоты от параметров модулирующего сигнала
- •9.1. Основные понятия
- •9.2. Измерение параметров чм-модулированного сигнала
- •Метод частотного детектора
- •Метод исчезающей несущей
- •9.3. Измерение девиации частоты методом исчезающей несущей
- •9.4. Требования к технике безопасности
- •9.5. Задание на выполнение лр
- •9.6. Порядок выполнения работы
- •10.2. Измерение коэффициента стоячей волны панорамным методом
- •10.3. Требования к технике безопасности
- •10.4. Задание на выполнение лр
- •10.5. Порядок выполнения работы
- •11.2. Метод импульсной рефлектометрии
- •11.3. Измеряемые линии
- •11.4. Требования к технике безопасности
- •11.5. Задание на выполнение лр
- •11.6. Порядок выполнения работы
- •11.7. Требования к содержанию и оформлению отчета
- •11.8. Контрольные вопросы и задания
- •Лабораторная работа 12 Измерение коэффициента затухания линии с помощью установки ет - 70т
- •12.1. Основные понятия
- •12.2. Линии связи
- •12.3. Измерение собственного ослабления линии с помощью установки ет-70т
- •Измерительный передатчик ет-70т/а.
- •Измерительный приемник ет-70т/V.
- •12.4. Требования к технике безопасности
- •12.5. Задание на выполнение лр
- •12.6. Порядок выполнения работы
- •13.2. Измеряемые линии
- •13.3. Измерение переходного затухания
- •14.2. Измеряемые линии
- •14.3. Измерение характеристик степени несогласованности сопротивлений
- •14.4. Требования к технике безопасности
- •14.5. Задание на выполнение лр
- •14.6. Порядок выполнения работы
- •15.2. Измерение электрического сопротивления шлейфа
- •15.3. Измерение омической асимметрии
- •15.4. Измерение электрического сопротивления изоляции
- •15.5. Измерение рабочей емкости
- •15.6. Измеряемые линии
- •15.7. Требования к технике безопасности
- •15.8. Задание на выполнение лр
- •15.9. Порядок выполнения работы
- •Результаты измерений параметров кабельной линии
- •15.10. Требования к содержанию и оформлению отчета
- •15.11. Контрольные вопросы и задания
- •Список литературы
Лабораторная работа 6 Измерение частоты методом дискретного счета на свч
Цель работы:
Изучение устройства и работы частотомера Ч3-68.
Измерение частоты методом дискретного счета на СВЧ.
Приборы и оборудование: цифровой генератор сигналов Rigol DG1022, частотомер электронно-счетный Ч3-68, автогенератор на диоде Ганна, цифровой осциллограф SEFRAM 5164DC.
6.1. Измерение сверхвысоких частот
Верхний предел частот, измеряемых цифровыми частотомерами, ограничен величиной 150 … 200 МГц за счет конечного быстродействия универсальных счетчиков. Задача расширения диапазона измерений решается двумя способами: путем предварительного деления частоты; введением в схему прибора гетеродинного преобразователя (переносчика) измеряемой частоты.
В
первом случае младшая (первая) декада
счетчика включает две пересчетные схемы
с коэффициентами деления 2 и 5. Первое
деление частоты осуществляется простым
триггером, быстродействие которого
выше, чем быстродействие декадного
счетчика, имеющего дополнительные
обратные связи. Очевидно, что изменение
структурной схемы младшей декады вызовет
изменение схемы последующего дешифратора.
Прием позволяет сместить верхнюю границу
измеряемых частот до 600 МГц.
Во втором случае расширение предела измерения до 10 … 12 ГГц достигается за счет предварительного переноса измеряемой частоты fx в область более низких частот. Этот перенос частоты осуществляют либо путем дискретного гетеродинного преобразования, либо путем гетеродинного переноса.
В случае преобразования высокая стабильность частоты гетеродина достигается за счет применения кварцевого генератора с последующим формированием сетки опорных частот или за счет использования синтезатора частот. В случае переноса требуемая стабильность частоты достигается введением в схему гетеродина системы фазовой автоподстройки (ФАПЧ).
Структурная схема (рис. 6.1) устройства дискретного гетеродинного преобразования частоты fx, дополняющего схему цифрового частотомера, включает генератор гармоник (нелинейный элемент), перестраиваемый фильтр (объемный резонатор со шкалой), смеситель и УПЧ с ограниченной полосой частот. Напряжение кварцевого генератора цифрового частотомера поступает на генератор гармоник, который формирует сетку дискретных частот nf0, где п - целые числа. Перестраиваемый фильтр выделит колебание частоты nf0, которая сместит измеряемую частоту fx в область промежуточных частот, усиливаемых УПЧ. Затем частота этих колебаний (fx - nf0) или (nf0 - fx) фиксируется цифровым частотомером с ограниченным верхним пределом измеряемых частот. Результат измерения находят из соотношения
,
где п – номер гармоники (определяют по шкале объемного резистора); Fсч - показание цифрового частотомера.
Для
исключения ошибок из-за неоднозначности
единичного результата измерение
неизвестной частоты fx
следует
повторить дважды при двух соседних
значениях гармоник nf0
и (n
±
1)
f0.
При этом правильные результаты двух
измерений совпадают. Например, пусть
измеряемая частота fx
= 983,25 МГц, ближайшие гармоники сетки
опорных частот nf0
= 980 МГц и (n+1)
f0
= 1000 МГц. Допустим, что при настройке
фильтра на 980 МГц счетчик частотомера
зафиксировал 3,25 МГц, а при настройке на
частоту 1000 –
15,75 МГц. Очевидно, что за результат
измерения следует принять
МГц.
Т
ак
как для переноса измеряемой частоты и
для формирования стробирующих импульсов
в приборе используется общий источник
образцового напряжения, результирующая
погрешность измерения fx
определяется
погрешностью из-за нестабильности
частоты кварцевого генератора частотомера
и погрешностью дискретности.
Частотомер с гетеродинным переносом частоты (рис. 6.2) осуществляет непрерывное и точное сравнение измеряемой частоты fx с п-ой гармоникой напряжения перестраиваемого генератора (гетеродина). Высокая точность измерений обеспечивается применением для сравнения частот кольца фазовой автоподстройки частоты (ФАПЧ) и цифрового частотомера для прямого отсчета текущего значения частоты генератора. Наличие в кольце ФАПЧ частотного дискриминатора и фазового детектора позволяет осуществлять автоматическое отслеживание любых изменений частоты, что, в свою очередь, обеспечивает возможность измерения частоты колебаний, модулированных по частоте или фазе. Управляющим напряжением для гетеродина служит сумма выходных напряжений частотного дискриминатора и фазового детектора. В режиме захвата и удержания частоты fx – n fг = f0, где f0 – частота кварцевого генератора цифрового частотомера, напряжение на выходе частотного дискриминатора равно нулю. Так как кольцо ФАПЧ содержит интегрирующее звено (система с астатизмом первого порядка), то равенство нулю напряжения на выходе фазового детектора возможно лишь в установившемся режиме при отсутствии изменений измеряемой частоты.
Недостаток цифровых частотомеров с переносом частоты связан с неопределенностью номера гармоники п. Если значение fx приблизительно известно, то номер гармоники определяется одновременно с вычислением fx из соотношения fx=f0 + nfг. При неизвестном значении fx определение п требует дополнительного измерения fг при работе генератора на гармониках, соседних с п. Это может быть устранено за счет дополнительного усложнения схемы прибора.