
- •Часть II
- •050100.62 «Педагогическое образование»,
- •Рецензенты: Лихачева о. Е.,
- •Юдина н. В.,
- •Введение
- •Рекомендации студентам по работе с учебными текстами по специальности
- •1. Произношение и чтение
- •2. Работа с лексикой
- •3. Работа над упражнениями
- •Algebra. Geometry text 1
- •The nature of algebra
- •Exercises:
- •1. Read the following words paying attention to the pronunciation:
- •2. Form nouns and translate them into Russian:
- •4. Express agreement or disagreement with the following:
- •5. Insert the missing words.
- •6. Translate into Russian.
- •7. Answer the following questions:
- •Definitions and notations
- •Exercises:
- •6. Translate into English:
- •Algebraic signs
- •Exercises:
- •6. Translate into English:
- •Squares and square roots
- •Exercises:
- •Involution
- •8. Translate into English:
- •Monomial and polynomial
- •Exercises:
- •2. Point out the nouns, adjectives and adverbs and write them down in three columns:
- •3. Give Russian equivalents to:
- •4. Choose the right word:
- •5. Answer the following questions:
- •6. Translate into English.
- •7. Make up 10 questions of all five types to the text. Ask your fellow-student to answer them. Text 6
- •Points and lines
- •Exercises:
- •Solid geometry
- •6. Translate into English:
- •7. Insert the missing words.
- •Kinds of angles
- •Exercises:
- •1. Read the following words paying attention to pronunciation:
- •3. Answer the following questions:
- •4. Express agreement or disagreement with the following:
- •6. Make up sentences of your own using words and expressions given below:
- •7. Translate into Russian.
- •8. Translate into English:
- •Measurement of angles
- •Exercises:
- •1. Make up sentences of your own using the words and expressions given below:
- •2. Answer the following questions:
- •4. Read the text. Ask 5 questions to it:
- •5. Translate into Russian:
- •6. Translate into English:
- •Exercises
- •Geometric solids
- •7. Answer the following questions:
- •8. Translate into Russian:
- •9. Choose the right word:
- •10. Read and translate. Theorems of Solid Geometry
- •Text 10
- •Kinds of polygons
- •Exercises:
- •Text 11
- •Trigonometry
- •Exercises:
- •Text 12
- •Trigonometric functions
- •Exercises:
- •7. Translate into English:
- •Text 13
- •Tables of values of trigonometric functions
- •Exercises:
- •6. Translate into English:
- •Основная литература
- •Периодические издания
- •Интернет-ресурсы
- •Рейтинговая система оценки успеваемости студентов 1 курса 2 семестр
Monomial and polynomial
Algebraic expressions are divided into the groups. A monomial is an algebraic expression whose last operation is neither addition nor subtraction. Consequently, a monomial is either a separate number represented bу a letter or by a figure, e.g. -a, -10, or a product, e.g. ab, (a-b)c, or a quotient, e.g. (a-b):c, or a power, e.g. b2, but it must never be either a sum or a difference.
If a monomial is a quotient, it is called a fractional monomial; all the other monomials are called integral monomials. Thus, (a-b):c is a fractional monomial, while (x-y)ab is an integral monomial.
An algebraic expression which consists of several monomials connected by the + and - signs, is known as polynomial. Terms of a polynomial are separate expressions which form the polynomial by the aid of the + and - signs.
A binomial is an algebraic expression of two terms; a trinomial is an expression of three terms and so on.
NOTES:
neither... nor - ни....ни
is known as a polynomial - известен как многочлен
thus - так, таким образом
Exercises:
1. Give words of the same root: serve, express, indicate, divide, represent, connect.
2. Point out the nouns, adjectives and adverbs and write them down in three columns:
Algebraic, integral, addition, last, while, point, several, sign, easily, fractional, difference, term.
3. Give Russian equivalents to:
neither addition nor subtraction, neither sum nor difference, either monomial or polynomial, either multiplication or division.
4. Choose the right word:
monomial, binomial, trinomial, polynomial, terms of polynomial, a quotient, groups, statement
1. Algebraic expressions are divided into two ... .
2. A ... is an algebraic expression of two terms.
3. A ... is an algebraic expression which consists of several ... .
4. A fractional monomial is called a monomial which is ... .
5. The separate expressions formed by the aid of the + and - signs are ... .
6. A ... is an algebraic expression of three terms.
5. Answer the following questions:
1. Into how many groups are algebraic expressions divided?
2. What is a monomial algebraic expression?
3. By what is a monomial represented?
4. What algebraic expression is called polynomial?
6. Translate into English.
Алгебраическое выражение, которое содержит только действия умножения, деления и возведения в степень, называется одночленом. Алгебраическая сумма нескольких одночленов называется многочленом. Двучлен это алгебраическое выражение, состоящее из двух членов, трехчлен - выражение, состоящее из трёх членов.
7. Make up 10 questions of all five types to the text. Ask your fellow-student to answer them. Text 6
При работе над текстом “Points and lines” формируется компетенция ОК-10: владеет одним из иностранных языков на уровне, позволяющем получать и оценивать информацию в области профессиональной деятельности из зарубежных источников.
В рамках формирования компетенции у студентов вырабатываются следующие умения, навыки:
Уметь
понимать информацию текстов из учебной литературы в соответствии с конкретной целью;
выступать с подготовленным сообщением.
Владеть
навыками оформления речевых высказываний в соответствии с грамматическими и лексическими нормами устной и письменной речи, фонетическими нормами (устная речь) и основными правилами орфографии и пунктуации (письменная речь) иностранного языка, не допуская ошибок, препятствующих речевому общению;
навыком использования двуязычных словарей при чтении различного типа текстов;
профессиональными основами речевой коммуникации с использованием терминологии данной дисциплины.
Применяются интерактивные технологии: работа малыми группами, решение ситуационных задач.