
- •Часть II
- •050100.62 «Педагогическое образование»,
- •Рецензенты: Лихачева о. Е.,
- •Юдина н. В.,
- •Введение
- •Рекомендации студентам по работе с учебными текстами по специальности
- •1. Произношение и чтение
- •2. Работа с лексикой
- •3. Работа над упражнениями
- •Algebra. Geometry text 1
- •The nature of algebra
- •Exercises:
- •1. Read the following words paying attention to the pronunciation:
- •2. Form nouns and translate them into Russian:
- •4. Express agreement or disagreement with the following:
- •5. Insert the missing words.
- •6. Translate into Russian.
- •7. Answer the following questions:
- •Definitions and notations
- •Exercises:
- •6. Translate into English:
- •Algebraic signs
- •Exercises:
- •6. Translate into English:
- •Squares and square roots
- •Exercises:
- •Involution
- •8. Translate into English:
- •Monomial and polynomial
- •Exercises:
- •2. Point out the nouns, adjectives and adverbs and write them down in three columns:
- •3. Give Russian equivalents to:
- •4. Choose the right word:
- •5. Answer the following questions:
- •6. Translate into English.
- •7. Make up 10 questions of all five types to the text. Ask your fellow-student to answer them. Text 6
- •Points and lines
- •Exercises:
- •Solid geometry
- •6. Translate into English:
- •7. Insert the missing words.
- •Kinds of angles
- •Exercises:
- •1. Read the following words paying attention to pronunciation:
- •3. Answer the following questions:
- •4. Express agreement or disagreement with the following:
- •6. Make up sentences of your own using words and expressions given below:
- •7. Translate into Russian.
- •8. Translate into English:
- •Measurement of angles
- •Exercises:
- •1. Make up sentences of your own using the words and expressions given below:
- •2. Answer the following questions:
- •4. Read the text. Ask 5 questions to it:
- •5. Translate into Russian:
- •6. Translate into English:
- •Exercises
- •Geometric solids
- •7. Answer the following questions:
- •8. Translate into Russian:
- •9. Choose the right word:
- •10. Read and translate. Theorems of Solid Geometry
- •Text 10
- •Kinds of polygons
- •Exercises:
- •Text 11
- •Trigonometry
- •Exercises:
- •Text 12
- •Trigonometric functions
- •Exercises:
- •7. Translate into English:
- •Text 13
- •Tables of values of trigonometric functions
- •Exercises:
- •6. Translate into English:
- •Основная литература
- •Периодические издания
- •Интернет-ресурсы
- •Рейтинговая система оценки успеваемости студентов 1 курса 2 семестр
Exercises:
Read and translate the following international words. Mind the pronunciation:
symbol, problem, arithmetical, prism, base, formula,
Give Russian equivalents to the following:
an aggregate of units , whose values are sought, the volume of any rectangular prism, the area of the base, is called a fractional number, whose values are to be found, whenever the rule is applied, multiplied by the height.
3. Complete the following sentences:
1. A unit or an aggregate of units is called ...
2. It is convenient to use letters for the numbers whose values are ... .
3. An equation that states a rule in brief form is called ... .
4. The volume of any rectangular prism is equal to ... .
5. A number whose value is to be found is called ... .
4. Answer the following questions:
1. What is called a whole number or an integer?
2. How can we represent arithmetical numbers?
3. When are letters used in starting rules?
4. The volume of any rectangular prism is equal to the area of the base multiplied by the height, isn't it?
5. Is a number whose value is to be found called an unknown number?
6. What is called a formula?
7. How can you call numbers represented by symbols?
5. Speak about algebra.
The words you may need:
statement, letters, an aggregate of units , the system of rules ,the operations with numbers, the characteristic of algebra, an unknown number, values are to be found, a formula.
6. Translate into English:
Алгебра - это система правил, касающихся действий с числами. В алгебре числа обозначаются буквами, а не цифрами. Поскольку буквы обозначают числа, все законы арифметики годны для действий с буквами.
Знаки, которые означают действия с цифрами, также употребляются для букв.
TEXT 3
При работе над текстом “Algebraic signs” формируется компетенция ОПК-5: обладает обладать способностью к подготовке и редактированию текстов профессионального и социально значимого содержания.
В рамках формирования компетенции у студентов вырабатываются следующие умения, навыки:
Уметь
понимать информацию текстов из учебной литературы в соответствии с конкретной целью;
выступать с подготовленным сообщением.
Владеть
навыками оформления речевых высказываний в соответствии с грамматическими и лексическими нормами устной и письменной речи, фонетическими нормами (устная речь) и основными правилами орфографии и пунктуации (письменная речь) иностранного языка, не допуская ошибок, препятствующих речевому общению;
навыком использования двуязычных словарей при чтении различного типа текстов;
профессиональными основами речевой. коммуникации с использованием терминологии данной дисциплины.
При работе над текстом применяются интерактивные технологии: работа малыми группами, решение ситуационных задач.
Algebraic signs
In algebra the signs (+) plus and (-) minus have their ordinary meaning, indicating addition and subtraction and also serve to distinguish between opposite kinds of numbers, positive (+) and negative (-). In such an operation as +10-10=0, the minus sign means that the minus 10 is combined with the plus 10 to give a zero result.
The so-called "double sign" (±), which is read "plus-or minus", is sometimes used. It means that the number or symbol which it precedes may be "either plus or minus" or "both plus and minus".
The sign of equality is =, read "is equal to" or "equals". The multiplication sign (x) has the same meaning as in arithmetic. In many cases, however, it is omitted.
The division sign (:) in algebra is frequently replaced by the fraction line; thus 6/3 means the same as 6:3 and in both cases the result or quotient is 2.
The signs of aggregation are: the parentheses ( ); the brackets [ ]; the braces { }. They are used to group numbers, each group being regarded as a single number. Thus, each of the forms (a \ b)c, [a + b]c, [a \ b}c signifies that the sum of a and b is to be multiplied by c. All operations within groups should be performed first. When numbers are included by any of the signs of aggregation, they are commonly said to be in parenthesis, in a parenthesis, or in parentheses.
The sign of continuation is . . . , read "and so on," or "and so on to". 2, 4, 6, 8 ... 50 is read "2, 4, 6, 8 and so on to 50."
The sign of deduction is -, read "therefore", or "hence".
Notes:
serve to distinguish - служит для того, чтобы различать
either plus or minus - либо плюс, либо минус
both plus and minus- как плюс, так и минус
is to be treated as - следует рассматривать как
Do the Exercises
1. m + n 4. Add 2 times c to 5 times d.
2. x-y 5. Subtract 2 times 4 from m times n.
3. a (4-6) 6. Divide v - w by r times s.