
- •Часть II
- •050100.62 «Педагогическое образование»,
- •Рецензенты: Лихачева о. Е.,
- •Юдина н. В.,
- •Введение
- •Рекомендации студентам по работе с учебными текстами по специальности
- •1. Произношение и чтение
- •2. Работа с лексикой
- •3. Работа над упражнениями
- •Algebra. Geometry text 1
- •The nature of algebra
- •Exercises:
- •1. Read the following words paying attention to the pronunciation:
- •2. Form nouns and translate them into Russian:
- •4. Express agreement or disagreement with the following:
- •5. Insert the missing words.
- •6. Translate into Russian.
- •7. Answer the following questions:
- •Definitions and notations
- •Exercises:
- •6. Translate into English:
- •Algebraic signs
- •Exercises:
- •6. Translate into English:
- •Squares and square roots
- •Exercises:
- •Involution
- •8. Translate into English:
- •Monomial and polynomial
- •Exercises:
- •2. Point out the nouns, adjectives and adverbs and write them down in three columns:
- •3. Give Russian equivalents to:
- •4. Choose the right word:
- •5. Answer the following questions:
- •6. Translate into English.
- •7. Make up 10 questions of all five types to the text. Ask your fellow-student to answer them. Text 6
- •Points and lines
- •Exercises:
- •Solid geometry
- •6. Translate into English:
- •7. Insert the missing words.
- •Kinds of angles
- •Exercises:
- •1. Read the following words paying attention to pronunciation:
- •3. Answer the following questions:
- •4. Express agreement or disagreement with the following:
- •6. Make up sentences of your own using words and expressions given below:
- •7. Translate into Russian.
- •8. Translate into English:
- •Measurement of angles
- •Exercises:
- •1. Make up sentences of your own using the words and expressions given below:
- •2. Answer the following questions:
- •4. Read the text. Ask 5 questions to it:
- •5. Translate into Russian:
- •6. Translate into English:
- •Exercises
- •Geometric solids
- •7. Answer the following questions:
- •8. Translate into Russian:
- •9. Choose the right word:
- •10. Read and translate. Theorems of Solid Geometry
- •Text 10
- •Kinds of polygons
- •Exercises:
- •Text 11
- •Trigonometry
- •Exercises:
- •Text 12
- •Trigonometric functions
- •Exercises:
- •7. Translate into English:
- •Text 13
- •Tables of values of trigonometric functions
- •Exercises:
- •6. Translate into English:
- •Основная литература
- •Периодические издания
- •Интернет-ресурсы
- •Рейтинговая система оценки успеваемости студентов 1 курса 2 семестр
Algebra. Geometry text 1
При работе над текстом “The nature of algebra” формируется компетенция ОПК-5: обладает обладать способностью к подготовке и редактированию текстов профессионального и социально значимого содержания.
В рамках формирования компетенции у студентов вырабатываются следующие умения, навыки:
Уметь
понимать информацию текстов из учебной литературы в соответствии с конкретной целью;
выступать с подготовленным сообщением.
Владеть
навыками оформления речевых высказываний в соответствии с грамматическими и лексическими нормами устной и письменной речи, фонетическими нормами (устная речь) и основными правилами орфографии и пунктуации (письменная речь) иностранного языка, не допуская ошибок, препятствующих речевому общению;
навыком использования двуязычных словарей при чтении различного типа текстов;
профессиональными основами речевой. коммуникации с использованием терминологии данной дисциплины.
При работе над текстом применяются интерактивные технологии: работа малыми группами, решение ситуационных задач.
The nature of algebra
Algebra is a generalization of arithmetic. Each statement of arithmetic deals with particular numbers: the statement (20 + 4)2 = 202 + 2x20x4+42 = 576 explains how the square of the sum of the two numbers, 20 and 4, may be computed. The same procedure applies if the numbers 20 and 4 are replaced by any two other numbers. In order to state the general rule, we write symbols, ordinarily letters instead of particular numbers. In this case the square of the sum of any two numbers A and В can be computed4 by the rule (A4-B)2 = A2+2AB+B2.
This is general rule which remains true no matter what particular numbers may replace the symbols A and B. A rule of this kind is often called a formula.
Algebra is the system of rules concerning the operations with numbers. Those rules can be stated as formulas in terms of letters.
The characteristic of algebra is the use of letters to represent numbers. Since the letters used represent numbers, all the laws of arithmetic hold for operations with letters.
For convenience the operation of multiplication is generally denoted by dot as by placing the letters adjacent to each other. For example, axb is written simply as ab.
The operations of addition, subtraction, multiplication, division, raising to a power and extracting roots are called algebraic expressions.
NOTES:
to deal with - иметь дело с, рассматривать
may be computed - может быть вычислена
instead of - вместо
to hold for - годиться
to raise to a power - возвести в степень
to extract root - извлекать корень
Exercises:
1. Read the following words paying attention to the pronunciation:
concern, length, generally, width, division, addition, total, power, call.
2. Form nouns and translate them into Russian:
add, divide, multiply, subtract, operate, state, express, represent, introduce.
3. Form adverbs of the following words by adding the suffix –ly and translate them into Russian:
general, ordinary, particular, simple, similar, different.