
- •Часть II
- •050100.62 «Педагогическое образование»,
- •Рецензенты: Лихачева о. Е.,
- •Юдина н. В.,
- •Введение
- •Рекомендации студентам по работе с учебными текстами по специальности
- •1. Произношение и чтение
- •2. Работа с лексикой
- •3. Работа над упражнениями
- •Algebra. Geometry text 1
- •The nature of algebra
- •Exercises:
- •1. Read the following words paying attention to the pronunciation:
- •2. Form nouns and translate them into Russian:
- •4. Express agreement or disagreement with the following:
- •5. Insert the missing words.
- •6. Translate into Russian.
- •7. Answer the following questions:
- •Definitions and notations
- •Exercises:
- •6. Translate into English:
- •Algebraic signs
- •Exercises:
- •6. Translate into English:
- •Squares and square roots
- •Exercises:
- •Involution
- •8. Translate into English:
- •Monomial and polynomial
- •Exercises:
- •2. Point out the nouns, adjectives and adverbs and write them down in three columns:
- •3. Give Russian equivalents to:
- •4. Choose the right word:
- •5. Answer the following questions:
- •6. Translate into English.
- •7. Make up 10 questions of all five types to the text. Ask your fellow-student to answer them. Text 6
- •Points and lines
- •Exercises:
- •Solid geometry
- •6. Translate into English:
- •7. Insert the missing words.
- •Kinds of angles
- •Exercises:
- •1. Read the following words paying attention to pronunciation:
- •3. Answer the following questions:
- •4. Express agreement or disagreement with the following:
- •6. Make up sentences of your own using words and expressions given below:
- •7. Translate into Russian.
- •8. Translate into English:
- •Measurement of angles
- •Exercises:
- •1. Make up sentences of your own using the words and expressions given below:
- •2. Answer the following questions:
- •4. Read the text. Ask 5 questions to it:
- •5. Translate into Russian:
- •6. Translate into English:
- •Exercises
- •Geometric solids
- •7. Answer the following questions:
- •8. Translate into Russian:
- •9. Choose the right word:
- •10. Read and translate. Theorems of Solid Geometry
- •Text 10
- •Kinds of polygons
- •Exercises:
- •Text 11
- •Trigonometry
- •Exercises:
- •Text 12
- •Trigonometric functions
- •Exercises:
- •7. Translate into English:
- •Text 13
- •Tables of values of trigonometric functions
- •Exercises:
- •6. Translate into English:
- •Основная литература
- •Периодические издания
- •Интернет-ресурсы
- •Рейтинговая система оценки успеваемости студентов 1 курса 2 семестр
7. Translate into English:
Тангенсом угла называется отношение синуса угла к косинусу этого угла.
Котангенсом угла называется отношение косинуса угла к синусу этого угла. Остальные тригонометрические функции - это синус, косинус, секанс и косеканс.
Синус острого угла - это отношение стороны, противоположной этому углу, к гипотенузе.
Косинус - это отношение смежной стороны к гипотенузе.
Секанс - это отношение гипотенузы к стороне, смежной с углом.
Text 13
При работе над текстом “Tables of values of trigonometric functions” формируется компетенция ОПК-5: обладает обладать способностью к подготовке и редактированию текстов профессионального и социально значимого содержания.
В рамках формирования компетенции у студентов вырабатываются следующие умения, навыки:
Уметь
понимать информацию текстов из учебной литературы в соответствии с конкретной целью;
выступать с подготовленным сообщением.
Владеть
навыками оформления речевых высказываний в соответствии с грамматическими и лексическими нормами устной и письменной речи, фонетическими нормами (устная речь) и основными правилами орфографии и пунктуации (письменная речь) иностранного языка, не допуская ошибок, препятствующих речевому общению;
навыком использования двуязычных словарей при чтении различного типа текстов;
профессиональными основами речевой. коммуникации с использованием терминологии данной дисциплины.
При работе над текстом применяются интерактивные технологии: работа малыми группами, решение ситуационных задач.
Tables of values of trigonometric functions
The usual practice of obtaining the trigonometric functions of a given angle is to compute the trigonometric functions for many angles between 0° and 90° by more accurate methods and to compile these results in the form of a table to which the Student may refer.
This table consists of angles from 0° to 45° listed by tenths of a degree in the left-hand column, reading downwards, and angles from 45° to 90° listed by tenths of a degree in the right-hand column, reading upwards. The angles horizontally opposite each other are complementary. For example, the angle 3° on the left has opposite it the angle 87°. In the four columns between are the sines, the cosines, the tangents and the cotangents of these two angles. The same numbers have been used for functions of each of the two complementary angles, for дs was shown the functions of an angle are equal to the co-f unction of its complement. For the angles on the left, the trigonometric readings at the top of the table indicate the column in which each function may be found.
In general, the tables of trigonometric functions are used for one of the purpose:
1) to find the functional value when the angle is known;
2) to find the angle when the functional value is known.
Exercises:
1. Read the following words paying attention to the pronunciation: tangent, practice, angle, cotangent, accurate, opposite, compile, sine, cosine.
2. Add the suffixes and translate the words:
-ward(s): - up, down, to;
-ly: - usual, horizontal, accurate, equal, general.
3. Make up sentences of your own using the words and expressions given below:
method for obtaining, of a given angle, opposite, opposite each other, to compute the function.
4. Answer the following questions:
l. How do we obtain a trigonometric function of a given angle?
2. Of what angles does the list of trigonometric functions consist?
3. What indicates the column in which each function may be found?
5. Translate into Russian:
We have already discussed several methods for obtaining the trigonometric functions of a given angle. However, all the methods taken up were either inaccurate or restricted to special angles. Consequently, the usual practice is to compute the trigonometric functions for many angles between 0° and 90° by more accurate methods and to compile these results in a form of a table to which the Student may refer.