- •Введение
- •1. Свойства металлов
- •1.1 Физические свойства
- •1.2 Химические свойства
- •1.3 Механические свойства
- •1.4 Технологические свойства
- •1.5 Эксплуатационные свойства
- •2. Классификация металлических материалов
- •2.1 Черные металлы
- •2.2 Цветные металлы и сплавы
- •3. Инструментальные материалы
- •3.1 Стали для режущего инструмента
- •3.2 Сталь для измерительного инструмента
- •4. Стали и сплавы со специальными свойствами
- •4.1 Металлические проводниковые материалы
- •4.2 Полупроводниковые материалы
- •4.3 Магнитные стали и сплавы
- •4.4 Сплавы с высоким электрическим сопротивлением
- •4.5 Стали и сплавы с особыми упругими свойствами
- •4.6 Сплавы с заданным коэффициентом теплового расширения
- •4.7 Сплавы с "эффектом памяти"
- •5. Алюминий и его сплавы
- •6. Медь и ее сплавы
- •7. Организация системы экологической безопасности на предприятии
- •Заключение
- •Список используемой литературы
- •Приложения Приложение а
- •Приложение б
- •Приложение в
4.3 Магнитные стали и сплавы
Магнитные стали и сплавы характеризуют магнитной проницаемостью, коэрцитивной силой и остаточной индукцией. В зависимости от значений этих величин магнитные материалы разделяют на:
♦ магнитно-мягкие материалы (ферромагнетики), имеющие малую коэрцитивную силу и большую магнитную проницаемость. К ним относят электротехническое железо и сталь, железоникелевые сплавы (пермаллои);
♦ магнитно-твердые стали и сплавы, имеющие большую коэрцитивную силу. Это высокоуглеродистые и легированные стали, специальные сплавы.
Электротехническое железо (марки Э, ЭА, ЭАА) содержит менее 0,04 % С, обладает высокой магнитной проницаемостью и применяется для сердечников, полюсных наконечников электромагнитов и др.
Электротехническая сталь содержит менее 0,05 % С и кремний, сильно увеличивающий магнитную проницаемость. По содержанию кремния эту сталь делят на четыре группы:
с 1 % Si-марки ЭП, Э12, Э13;
с 2 % Si - марки Э21, Э22;
с 3 % Si - марки Э31, Э32;
с 4 % Si марки Э41, Э48.
Вторая цифра {1 - 8) характеризует уровень электротехнических свойств.
Железоникелевые сплавы (пермаллои) содержат 45 - 80 % Ni, их дополнительно легируют Cr, Si, Mo. Магнитная проницаемость этих сплавов очень высокая. Применяют пермаллои в аппаратуре, работающей в слабых магнитных полях (телефон, радио).
Ферриты - материалы, получаемые спеканием смеси порошков ферромагнитной окиси железа Fe2O3 и оксидов двухвалентных металлов (ZnO, NiO, MgO и др.). У ферритов очень высокое удельное электросопротивление, что определяет их применение в устройствах, работающих в области высоких и сверхвысоких частот.
Развитие электроники, вычислительной техники, радиотехники обусловило необходимость разработки магнитных материалов со специальными магнитными свойствами.
В электронной вычислительной технике и автоматических устройствах широко применяют магнитные материалы с прямоугольной петлей гистерезиса (ППГ). Основными требованиями к материалам с ППГ являются: заданное значение коэрцитивной силы и минимальное время перемагничивания.
В малогабаритных ЭВМ и оперативных запоминающих устройствах используют тонкие ферромагнитные пленки. Характерная особенность этих материалов - незначительное время перемагничивания (от десятых долей до нескольких наносекунд).
В качестве носителей магнитной записи используют ленты, диски, барабаны и т.д. Магнитную запись производят на специальном материале, состоящем из под ложки и слоя магнитного вещества на органическом связующем, В качестве подложки используют поливинилхлорид, лавсан, полиамид. Магнитный материал - это обычно высокодисперсные оксиды Fe2Cr203, сплавы Fe-Co. Слой магнитного материала наносят электролитическим осаждением, распылением в вакууме.
4.4 Сплавы с высоким электрическим сопротивлением
Сплавы с высоким электрическим сопротивлением применяются для изготовления электронагревателей и элементов сопротивлений (резисторов) и реостатов.
Железохромалюминиевые (Х13Ю4) и никелевые (Х20Н80 - нихром) сплавы для электронагревателей обладают высокой жаростойкостью, высоким электрическим сопротивлением, удовлетворительной пластичностью в холодном состоянии. Стойкость нагревателей из железохромалюминиевых сплавов выше, чем у нихромов. Сплавы применяют для бытовых приборов и для промышленных печей.
