
- •1 Значення курсу і зв’язок його з іншими науками
- •2 Геологічна картографія
- •Топографічні карти і топооснови геологічної карти
- •3 Будова та умови формування шаруватих товщ
- •4 Неузгодження
- •1 За величиною кута неузгодження:
- •5 Горизонтальне і нахилене залягання шарів
- •6 Фізичні умови деформації гірських порід
- •Руйнування гірських порід.
- •7 Складчасті форми залягання
- •8 Розривні порушення
- •Морфологічна класифікація
- •Тема 9 особливі форми залягання осадових гірських порід
- •Згини шарів на схилах під впливом сили тяжіння
- •Тема 10 форми залягання магматичних і метаморфічних порід
- •Тема 11. Структури земної кори континентальногоі океанічного типів
- •Магматизм геосинклінальних областей
- •Тема 12. Аеро- і космометоди при геологічних дослідженнях
- •Тема 13. Загальні принципи і методи геологічного картування
- •14 Організація і проведення геологічного картування
- •Перелік використаних джерел
Тема 12. Аеро- і космометоди при геологічних дослідженнях
Дистанційні дослідження - аерокосмометоди - включають у себе методи, що дозволяють вивчати фізичні поля Землі на відстані з метою отримання інформації про будову земної кори. Фізичною основою аерокосмометодів є випромінювання і відбиття електромагнітних хвиль природними об"єктами. При геологічних дослідженнях, які проводяться з борту літаків, космічних кораблів і супутників, застосовуються методи дистанційних досліджень у видимому і близькому до нього діапазонах електромагнітного спектру (візуальні спостереження, фотозйомка, телевізійна зйомка) і методи, що реєструють невидиму частину електромагнітного спектру випромінювання Землі (фотоелектронна, інфрачервона, спектрометрична, радіолокаційна, ультрафіолетова тощо).
Аерометоди
До аерометодів належить комплекс методів, які виконуються візуально чи з допомогою різних приладів з наступним аналізом отриманих даних наземними контрольними роботами. Їх застосування грунтується на існуванні тісного зв"язку між геологічною будовою, з одного боку із рельєфом, гідрографією, грунтами, рослинністю, кольоровими і тоновими особливостями ландшафту земної поверхні, з іншого.
Аерометоди вирішують такі геологічні задачі: проведення на їх основі геологозйомочних і пошукових робіт усіх масштабів, вивчення тектоніки, новітніх рухів земної кори, структури рудних полів, геологічне вивчення морського шельфу, гідрогеологічні і географічні дослідження, встановлення гідрогеологічного режиму територій. Аерометоди поділяються на візуальні, аерофотографічні і фотоелектонні.
Аеровізуальні методи пов"язані із безпосереднім спостереженням досліджуваних об"єктів з повітря. Отримані результати переносяться на карту, записуються на магнітофонну плівку, можливе використання кінокамер і фотокамер.
Аерофотографічні методи - це фотографування земної поверхні з борту літака за допомогою фотоапаратів. Є найбільш універсальним і ефективним методом при геологічних дослідженнях територій. Дозволяють отримувати відображення об"єктів у видимій і близькій до неї частині спектру у будь-яких масштабах. За аерофотознімками в камеральних умовах за допомогою оптичних приладів можна створити об"ємну модель місцевості у заданому масштабі.
Аерофотозйомка є чорно-біла, кольорова, спектральна. Чорно-білі фотознімки передають зображення у чорно-білих тонах, кольорова - у кольорових, наближених до природних.
Спектральна зйомка виконується із кольоровими світлофільтрами на чорно-білу плівку; це дає можливість виявляти певні об"єкти, що слабо помітні або взагалі невидимі при звичайному фотографуванні.
Спектрозональна аерофотозйомка здійснюється на плівку з декількома фотографічними шарами. Фотографування об"єктів відбувається одночасно в декількох (2-х чи 3-х) різних зонах спектру, включаючи невидимі ультрафіолетову та інфрачервону зони. При цьому враховується властивість об"єктів у неоднаковій ступені відображати різні промені спектру. Двох- чи трьохшарові плівки дозволяють на одному знімку отримати зображення в різних умовних кольорах, що перекриваються, а це значно збільшує контрастність кольорового зображення деталей об"єкту.
Фотоелектронні методи дають можливість вести вивчення випромінюючих, відбиваючих і проникних властивостей електромагнітних коливань у різних геологічних об"єктах як у видимому, так і в невидимому діапазонах спектру. Коливання реєструються на магнітну стрічку електронно-променевою трубкою чи іншими детекторами, які в подальшому передають їх на фотоплівку і фотопапір.
Види аерофотозйомок
Розрізняють планову, перспективну і маршрутну аерофотозйомки.
Планова зйомка. Оптична вісь фотоапарата перпендикулярна до поверхні Землі. Масштаб змінюється від центральної точки знімку рівномірно в усіх напрямках.
Перспективна зйомка. Оптична вісь фотоапарату не перпендикулярна до поверхні Землі, що призводить до різномасштабності зображення в різних точках знімку. Сітка квадратів на місцевості на перспективному знімку має вигляд трапеції, тоді як на плановому - квадратів .
При геологічних дослідженнях головним чином використовуються планові знімки. Перспективна зйомка застосовується при вивченні територій з різко розчленованим рельєфом, є круті схили, берегові обриви, кар"єри. В таких випадках виникають великі ускладнення з перенесенням результатів дешифрування перспективних знімків на топооснову.
Маршрутна зйомка - це планова чи перспективна зйомка вздовж певного напрямку (берегової лінії, річкової долини, гірського хребта тощо). Застосовується переважно для дослідження інженерно-геологічних умов певних територій щодо перспектив спорудження будівельних об"єктів, шляхів сполучення тощо.
Види фотоматеріалів
Розрізняють такі фотоматеріали: контактний друк, репродукції накидного монтажу, фотосхеми, фотокарти, фотоплани.
Контактний друк - це знімки, віддруковані безпосередгьо (тобто, контактно, без збільшення) з негативної фотоплівки. Кожний аерознімок має індекс, що складається із серії і порядкового номеру, що вказується у правому верхньому куті. Знімки нумеруються за ходом зйомки в напрямку польоту літака. Розташовуються знімки рядами, відповідно до маршрутів аерозйомних польотів, через рівні проміжки і мають у межах одного маршруту повздовжнє перекриття до 60%. Знімки одного маршруту повинні перекриватися знімками сусіднього паралельного маршруту. Таке перекриття є поперечним і досягає 40% площі знімку. Таким чином, отримують суцільне подвійне перекриття знімками усієї площі, що фотографується. Це необхідно для отримання стереоскопічного ефекту при розгляді в стереоскопі двох суміжних аерофотознімків, тобто стереопари.
Репрродукції накидного монтажу - це сполучення усіх аерофотознімків, які вкривають зняту трапецію і підібрані таким чином, що дають зображення трапеції в цілому. Виготовляються у довільному масштабі, служать для орієнтування і швидкого знаходження потрібного контактного знімку.
Фотосхеми - це монтаж частин контактних відбитків, які складають зображення відзнятої місцевості. Для складання фотосхем центральні частини знімків (де викривлення масштабу зображення мінімальне) вирізаються і наклеюються на картон у вигляді суцільної мозаїки.
Фотоплани і фотокарти виготовляють у відповідності до вимог, що існують для топографічних карт відповідного масштабу. Це фотографічні зображення місцевості з точним масштабом, що приведені до певної системи координат і не мають викривлень.
Властивості аерофотознімків (АФЗ)
Центральна точка знімку - це точка, в яку направлена оптична вісь фотоапарату; інакше її називають головною точкою знімку. Для її визначення служать координатні вершини, відмічені на краях знімку кутиками. Центральна точка знімку розташовується на перетині діагоналей, що сполучають протилежні координатні вершини.
Масштаб знімків. Знаменник масштабу може бути визначений шляхом поділу висоти польоту на фокусну відстань об"єктиву фотоапарату. При постійній висоті польоту масштаб АФЗ тим менший, чим менша фокусна відстань; масштаб знімку зменшується із збільшенням висоти польоту.
Викривлення зображення на АФЗ можуть бути викликані різними причинами, як об"єктивними так і суб"єктивними. Це можуть бути викривлення, пов"язані із виробничими операціями (поганий папір, відхилення від маршруту), які можуть виправлятися у процесі аерофотозйомки. Але найбільш суттєвим видом викривлень є викривлення, викликані рельєфом місцевості, що знімається. Рельєф, що має значні перевищення, зображується на фотознімку у значно викривленному вигляді. Це виражається у зміщенні точок місцевості на аерофотознімку порівняно із зображенням їх на ортогональній проекції плану чи карти. Найменшими будуть викривлення в межах центральної частини знімку, приблизно це становить 30% знімку навколо центральної точки. Саме ці частини аерофотознімків рекомендується використовувати у роботі, але в деяких випадках доводиться проводити ще додаткові корекції знімків для приведення зображень до сприйнятного масштабу і вигляду.
Методи геологічного дешифрування аерофотознімків.
Метою дешифрування аерофотознімків є дешифрування зображених на знімках об"єктів. Дешифрування може бути топографічним, геологічним або мати інше призначення.
При геологічному дешифруванні матеріалів АФЗ виявляються такі об"єкти, які можуть бути виражені геологічними умовними позначеннями. Геологічне дешифрування базується на використанні головних особливостей геологічної будови і морфології земної поверхні, відображених на аерофотознімках.
Геологічне дешифрування дозволяє вирішити такі задачі:
- отримати модель місцевості у заданому масштабі;
- визначити параметри геологічних об"єктів під час камеральних робіт;
- точно і раціонально розташувати точки наземних спостережень і здійснити їхню надійну прив"язку;
- виявити особливості геологічної будови земної поверхні, які не фіксуються засобами польових спостережень;
- мати можливість спостерігати не один, а декілька об"єктів одночасно в їх природних співвідношеннях;
- здійснювати геологічне, геоморфологічне та інше вивчення земної поверхні, як за лініями маршрутів, так і на площах, що розташовані між маршрутами;
- виявляти ступінь відслоненості місцевості і розташування відслонених ділянок і обирати на цій основі найбільш повноцінні польові маршрути.
Дешифруючі ознаки
При геологічному дешифруванні використовують як прямі ознаки, які відображають на аерознімку безпосередньо об"єкт, що дешифрується, так і побічні, які передають ті чи інші геологічні властивості об"єкту не прямо, а за допомогою інших ознак: рослинність, грунти, обводненість тощо.
До прямих ознак належать: геометрична форма , розміри, тон (колір), рисунок земної поверхні.
Форма. Зображення на плановому знімку близьке до ортогональної проекції. Зазвичай звертають увагу на напрямок і форму лінійних границь, площинну конфігурацію об"єктів і об"ємну форму. Задачі, які вирішуються при геологічному дешифруванні: визначення кутів падіння шаруватих товщ, кутів нахилу рельєфу, контактів інтрузивних масивів із вміщуючими породами.
Розмір зображення предмету на аерофотознімку, помножений на знаменник масштабу знімку, дає розмір предмету на місцевості, що у сполученні із формою є суттєвою дешифруючою ознакою.
Тоном називається ступінь почорніння або яскравість зображення на аерофотознімку. Розрізняють 32-35 відтінків від білого до чорного кольору. Тон зображення залежить від факторів: яскравість об"єкту, його "фотогенічність", колір, умови фотографування, склад плівки, якість паперу.
Яскравість об"єкту складається із освітленості сонячним світлом, властивостей і відбиваючої здатності його поверхні. Максимальне освітлення мають поверхні, розташовані нормально до сонячного проміння. Відбиваюча здатність залежить від структури поверхні, яка може бути гладкою, матовою чи шорсткою. Гладка поверхня води дає дзеркальне відображення сонячного проміння і зображається на знімку білим тоном. Матова поверхня дає сірий тон, а шорстка - нерівне забарвлення в різні відтінки сірого кольору, що пов"язане з підвищеннями рельєфу, які відкидають тінь.
Велике значення при дешифруванні АФЗ має тінь - простір, не освітлений прямим світлом. Не освітлений сонцем бік предмету утворює на знімку власну тінь, а тінь, яка відкидається предметом на земну поверхню - падаючу тінь. Тінь - це дешифруюча ознака, що дозволяє відрізняти об"ємний об"єкт від обривів, вододілів. Але разом із позитивним значенням, тіні можуть мати негативний вплив на дешифрування знімків, оскільки можуть затемнювати обширні площі.
Рельєф. Рисунок рельєфу на АЗФ часто повністю відображає геологічну будову і геоморфологічні особливості. У більшості випадків рельєф зумовлений структурними особливостями, літологічним складом, фізичними властивостями чи генетичними умовами формування гірських порід. Усі ці фактори у тій чи іншій ступені, в залежності від прояву селективного вивітрювання і денудації, відображаються на поверхні у вигляді характерних форм мезо- і мікрорельєфу, в розвитку гідрографічної сітки і характері розподілу рослинності.
Побічні ознаки. Усі явища і предмети у природі знаходяться у тісному взаємозв"язку і дають певні сполучення. З цього взаємозв"язку і виникають так звані побічні ознаки. Серед них головне значення мають геоморфологічні ознаки, характер рослинності, колір і ступінь зволоження грунтів, водні джерела тощо.
Геоморфологічні ознаки. Міцність порід і стійкість їх до процесів вивітрювання впливають на формування макро- та мікроформ рельєфу. Велике значення має порушеність порід тріщинами і розривами із зміщенням, які визначають рисунок річкових та ярових сіток. Відокремлені типи рельєфу розвиваються на всій площі розповсюдження порід із певними фізичними і структурними властивостями. це дає можливість виділити території розповсюдження одновікових товщ чи порід близьких за складом і за походженням.
Рослинність. окремі види рослинності можуть існувати тільки на грунтах певного складу. На дуже вапнистих грунтах трав"яниста рослинність пригнічена, натомість добре ростуть чагарники. На засолених ділянках рослинність взагалі практично відсутня. Деревинна рослинність сприяє геологічному дешифруванню при горизонтальномцу і слабонахиленому заляганні порід із розвинутим на цих породах розчленованим рельєфом. На крутих схилах, складених міцними породами, часто виникають перерви у суцільній смузі деревинної рослинності. Крім того слід звертати увагу на характер деревинної рослинності, її густоту, відтінки зеленого листя тощо, оскільки з геохімічної точки зору це може бути гарними індикаторами рудоносності чи нафтогазоносності території.
Грунти. Основними індикаторами грунтів є їх кольорові відтінки на АФЗ. Окрас грунтів залежить головним чином від літологічних особливостей вихідних порід, співвідношення гумусових і мінеральних складових, механічного стану, засоленості та ступеню зволоженості. Останній фактор найбільше позначається на характері трав"янистої рослинності. Особливо велике значення ця дешифруюча ознака має при виявленні розривних порушень та інших проникних ділянок у земній корі. Цій же меті можуть слугувати і водні джерела.
Застосування кольорової та спектрозональної аерофотозйомок
Кольорова фотографія з найбільшою реальністю передає колір поверхні Землі і гірських порід, а колір - це одна з головних прямих дешифруючих ознак. Застосовується кольорова аерозйомка особливо успішно для районів із доброю відслоненістю і наявністю різкого кольорового контрасту між гірськими породами, а також для районів розвитку крихких алювіально-делювіальних утворень, якщо вони зберігають властивості корінних порід. велике значення для різкості зображення на кольорових аерознімках має масштаб зйомки, розміри об"єктів, крутизна схилів рельєфу.
Кольорові аерознімки підвищують ефективність геологічного дешифрування при наявності в складі порід яскраво зафарбованих і добре відслонених порід різних світ, пачок, пластів тощо, окрас яких може простежуватись за простяганням на значні відстані і які можуть використовуватись у якості маркуючих горизонтів.
Спектрозональна зйомка застосовується з метою підвищення контрастності зображення.
Фотогенічність геологічних об"єктів
"Фотогенічність" регіону - це ступінь відображення у фізико-географічному ландшафті особливостей геологічної будови, а відповідно - ступінь достовірності розпізнавання геологічної структури за рисунком АФЗ. Геологічна фотогенічність залежить від геологічної будови об"єкту, рельєфу, рослинності, відслоненості гірських порід, наявності континентальних відкладів і слідів діяльності людини. У зв"язку з цим розрізняють три ступені геологічної дешифруємості матеріалів: добру, середню, слабку (погану).
При добрій дешифруємості визначається більше 60% елементів геологічної будови; можна виділити всі елементи геологічної будови: границі стратиграфічних підрозділів осадових і ефузивних порід, контури інтрузивних масивів, вікові групи найновіших континентальних утворень, елементи складчастої структури, основну частину розривів, елементи залягання і товщину шарів порід, всі типи четвертинних відкладів. Дешифруються генетичні форми та елементи рельєфу..
При середній дешифруємості визначається від 30 до 60% елементів геологічної будови. Встановлюються границі літологічно різних порід, найновіші континентальні утворення і розривні порушення. Виділяється більшість товщ, інтрузивніх тіл, розшифровуються крупні складчасті структури, розділяються четвертинні відклади. Дешифруються генетичні типи та елементи рельєфу.
При слабкій (поганій) дешифруємості виявляються менше 30% елементів геологічної будови. Намічається простягання в осадових і ефузивних товщах. За побічними ознаками проводяться умовно границі інтрузій, континентальних відкладів, виявляються елементи складок, положення розривних порушень.
Космічні методи в геології
Методи вивченні Землі із космосу поділяються на дві групи. Перша група методів використовує видиму і ближню інфрачервону області електромагнітного спектру. Це візуальні спостереження, фотозйомка і телевізійна зйомка. Друга група методів реєструє невидиму частину електромагнітного спектру. Тут виділяють інфрачервону зйомку, радіолокаційну, спектрометричну і спеціальні зйомки (лазерну, ультрафіолетову тощо).
В практиці геологічних спостережень частіше використовуються фотозйомка і телевізійна зйомка.
Космознімки (КФЗ) та їх властивості
Космофотознімки - це основний вид інформації, який отримують з космосу. Особливості КФЗ:
- дозволяють вимірювати усі три координати рельєфу місцевості, тобто визначати просторове положення геологічних структур;
- оглядовість і генералізація зображення;
Оглядовість залежить від висоти польоту космічного апарату, умов зйомки, типу об"єктиву апарату.
Під генералізацією розуміють єдність у зображенні ландшафту на космічних знімках (відкидаються усі другорядні елементи ландшафту. які "заважають" при дешифруванні крупномасштабних знімків);
- дрібний масштаб зображення, широкий діапазон масштабу. Це дозволяє вивчати об"єкти різного рівня генералізації. Наприклад: космічні зйомки глобального рівня генералізації (масштаб 1: 500000) дозволяє встановити розташування крупних лінеаментав. В межах лінеаментів встановлюються особливості взаємного розташування крупних геоструктур. В межах останніх - структурні форми другого порядку. Дрібні масштаби і оглядовість космічних знімків дозволяють одночасно аналізувати розташування, взіємовідношення геологічних об"єктів різного тектонічного рангу.
- проникна здатність космічних знімків, яка полягає в наступному: при збільшенні висоти зйомки на знімках відображаються структурні утворення, що розташовані в глибинах земної кори.
При фотографуванні з космосу застосовуються такі види фотоплівок: чорно-біла, кольорова трьохшарова і спектрозональна двохшарова плівка.
Фотографування з космосу може виконуватися шляхом застосування багатозональної зйомки, яка здійснюється за допомогою багатокамерних апаратів, кожний з яких має спеціальний світлофільтр, розрахований на отримання зображення у певному діапазоні спектру, або багатооб"єктивних фотоапаратів.
Переваги багатозональних зйомок полягають у можливості отримання складових кольорових зображень, а також у високій контрастності зображень поверхневих об"єктів. До недоліків методу відноситься великий об"єм робіт з дешифрування при багатократному повторенні одного і того ж зображення.
При геологічних дослідженнях основними видами космофотоматеріалів є космофотознімки (перспективні і планові), трансформовані космофотознімки і космофотосхеми.
Кожний із КФЗ має два номери: порядковий у процесі зйомки інвентарний, а також дату і час фотографування. Майже всі первинні КФЗ є перспективними і приводяться до планових після трансформування.
За відсутності даних про висоту зйомки і фокусну відстань об"єкту., масштаб КФЗ може визначатись за допомогою топокарти знімку.
Дешифрування космічних знімків базується на виділенні на КФЗ ділянок з однаковим характером ландшафту земної поверхні. Оптичні властивості ландшафтів впливають на фотозображення природних об"єктів у вигляді розбіжностей кольору і фототону.
В результаті дешифрування проводять ландшафтне районування і встановлюють взаємозв"язки окремих компонентів ландшафту з елементами геологічної будови.
Для кожного із ландшафтних районів виявляється комплекс геологічних, геоморфологічних, неотектонічних, грунтово-біологічних та інших природних умов, що відображаються на КФЗ у вигляду комплексу дешифруючих ознак - ландшафтних індикаторів. Комплекси ландшафтних індикаторів відповідають певним умовам осадконакопичення, магматизму, метаморфізму і тектонічної будови. Зміна умов відображається на ландшафті і, відповідно, на сполученні ландшафтних індикаторів.
Телевізійна зйомка
Телевізійна зйомка використовує видиму область спектру і ближню частину інфрачервоного випромінювання. у діапазоні 0,8-1,1 мкм. Зображення земної поверхні проектується на приймальний пристрій, з якого електричні сигнали передаються на Землю, або записуються на магнітну плівку, з якої вони потім передаються на Землю. В наземних пунктах телесигнали приймаються, підсилюються і за допомогою певних пристроїв (електронно-променевої трубки та ін.) відтворюються у вигляді зображень.
Телевізійна система виконує покадрову зйомку, а знята смуга складається з окремих кадрів.
При вертикальній орієнтації телекамери зображення поверхні наближається до планового, а перспективні викривлення на його краях викликані кривизною Землі. Для збільшення смуги захвату зйомка може проводитись одночасно двома телекамерами, оптичні осі яких відхилені від вертикалі на 19º. Зйомка може проводитись не тільки за допомогою телевізійних камер, але й шляхом використання скануючих пристроїв.
Для геологічних цілей використовуються два види телевізійних матеріалів: окремі телезнімки і телефотосхеми.
Основні дешифруючі ознаки телезнімків: фототони і рисунок зображення. Рекомендується виділяти на знімках ділянки, що відрізняються по фототону і рисунку зображення; результати дешифрування переносяться на телесхему.
Телевізійні знімки більш дрібні за масштабом забраження, ніж КФЗ, відрізняються більшою оглядовістю та генералізацією і можуть з успіхом використовуватися для дослідження регіональних і глобальних тектонічних процесів, осадконакопичення, вулканізму, сейсмології, при геоморфологічних дослідженнях. Телевізійні зображення і КФЗ доповнюють одні одних і утворюють разом із АФЗ єдиний послідовний комплекс матеріалів дистанційного вивчення поверхні Землі.
Космічні дослідження у невидимій області спектра
Широке застосування при геологічних дослідженнях отримали інфрачервона, радарна, радіотеплова, спектрометрична зйомки. Інші види зйомок: ультрафіолетова, лазерна і радіаційна - ще не знайшли достатнього застосування.
Інфрачервона зйомка основана на використанні зображення, отриманого в області спектру інфрачервоного випромінювання (ІВ). Нижня межа інфрачервоної області 0,76 мкм, верхня точка не встановлена - до 1000 мкм. Як правило джерелом ІВ є нагріте тіло.
Основні джерела, що викликають ів природних об"єктів, умовно можуть бути поділені на три групи:
- первинні теплові джерела (Сонце, ендогенне тапло Землі);
- вторинні джерела, нагрівання і випромінювання яких відбувається під дією інших джерел (випромінювання поверхні нечорного тіла та інше);
- змішані джерела, які характеризуються як власним, так і розсіяним відбиттям (атмосфера, поверхня Землі та інше).
При інфрачервоній зйомці застосовуються спеціальні фотоелектричні і теплові прилади, які перетворюють невидиме інфрачервоне випромінювання у видиме на електронно-променевих трубках. Реєстрація отриманого сигналу переводиться на плівку.
Фотографії, отримані у ближній частині ІЧ спектру, порівняно із звичайною фотографією, дають чіткі границі розповсюдження рослинності, водних поверхонь. крім того, ІЧ-фотографія дає можливість отримати знімки при найменшому освітленні і в темноті.
Оскільки теплове випромінювання характерне для всіх предметів, що нас оточують, а температура цих предметів різна, то ІЧ зображення характеризує просторове розповсюдження теплових неоднорідностей земної поверхні.
Спектр ІЧ випромінювання умовно поділений на три діапазони: ближній - 0,76-1,40 мкм, середній - 1,40-3,0 мкм і дальній - 3,0-1000 мкм. Використання різних ділянок спектру нерівномірне. У межах ближнього діапазону в основному реєструється відбите випромінювання Сонця, і тому основне застосування знаходить середній і початок дальнього діапазону (2-14 мкм).
При проходженні ІЧ випромінювання через атмосферу відмічається вибіркове поглинання випромінювання газом і водяною парою.
На ІЧ зображеннях яскравими тонами зображуються ділянки, які мають більш низьку температуру, а темний фон відповідає ділянкам з більш високою температурою.
Як відомо, із збільшенням вологості температура поверхні значно знижується. Користуючись цією властивістю, на ІЧ зображеннях за зміною теплових контрастів земної поверхні можна виділити місця підвищеної вологості, пов"язані із наявністю грунтових і пластових вод. Особливо важливе використання ІЧ методу при пошуках грунтових вод у пустельних областях.
При радарній зйомці використовується мікрохвильовий діапазон електромагнітного спектру від 0,3 до 1 м. При цьомму можуть фіксуватися природне випромінювання і штучний радіосигнал, відбитий від різних об"єктів. У залежності від природи електромагнітного випромінювання радарна зйомка поділяється на радіолокаційну, або власне радарну і радіотеплову.
Для вирішення геологічних задач застосовуються радіолокатори бокового огляду, які встановлюються на літальних апаратах. Як правило встановлюються два локатори, що ведуть зйомку двох смуг, паралельних до маршруту літака.
Посланий радіосигнал по нормалі відбивається від зустрічних об"єктів і нерівностей поверхні Землі і вловлюється спеціальною антеною, після чого передається на відеокон або фіксується на фотоплівці. Радарну зйомку можна проводити у будь-який час доби і за будь-якої погоди. Лише при різко розчленованому рельєфі частина інформації може бути прихована радарною тінню. Внаслідок бокового огляду ділянка місцевості, що знаходиться під літаком, не попадає в зону огляду радіопроменя.
При геологічних дослідженнях як правило використовуються радіолокаційні зйомки двох фіксованих масштабів 1:90000 і 1:180000; ширина смуг досягає відповідно 13,5 і 27 км, ширина незнятої смуги дорівнює двом висотам польоту літака.
Дешифрування РЛ знімків основане на ти самих методичних прийомах, що і чорно-білих аерознімків. Серед прямих дешифруючих ознак основне значення мають структурний рисунок, тон і текстура зображень, а серед побічних - рельєф, вологість і характер рослинності. Найбільшу інформативність мають РЛ знімки, зроблені за простяганням структур.
РЛ знімки значно повніше ніж аерофотознімки можуть відобразити структури корінних порід, перекритих крихкими осадами, або на місцевості, вкритій густим рослинним покриттям.
Радіотеплова зйомка реєструє теплове радіовипромінювання (радіовипромінювання Сонця, земної поверхні) в діапазоні 0,3-10 см. Радіотеплова зйомка близька до ІЧ зйомки, ала відрізняється від останньої перш за все діапазоном частот. Відмінність природних об"єктів за тепловими неоднорідностями в області радіочастот залежить від температури тіла і коефіцієнта випромінювання природних об"єктів. При зміні вологості , солоності та інших параметрів, що впливають на природне електромагнітне поле гірських порід, а також при зміні складу порід земної поверхні, коефіцієнт випромінювання змінюється і це дає можливість фіксувати теплову аномалію. При спостереженні за земними об"єктами максимальні радіотеплові контрасти спостерігаються між водою і сушею, але дозволяють виявити приховані водойми, при цьому радіотеплова зйомка не залежить від стану атмосфери. Найбільший ефект зйомка дає при вивченні берегових ліній, вулканічної і гідротермальної діяльності, а також льодовикового покриття.
Спектрометрична зйомка полягає у реєстрації відбиваючих властивостей земної поверхні і атмосфери у видимому і ближньому інфрачервоному діапазоні. Вимірявши загальний потік падаючої радіації і потік радіації, відбитий від земної поверхні і розсіяний атмосферою, можна обчислити коефіцієнт спектральної яскравості поверхні Землі.
Спектрометрична зйомка проводиться як з літаків, так і з космічних літальних апаратів. Дешифрування спектральної яскравості природних утворень полягає у порівнянні з еталонним екраном. Для вимірів існують спеціальні спектрографи.
Процес зйомки включає в себе спектральний розподіл випромінювання, що попадає в прилад, перетворення променевої енергії в електричну і реєстрацію величин, пропорційних отримуваним сигналам.
Найбільш ефективною є мікрохвильова спектрометрія при довжині хвилі 0,3-1,0 м. Спектрометричні характеристики у деяких випадках значно повніші, ніж ті. які отримуються при фотографуванні. Однак складність її використання для цілей геології полягає у недостатній вивченості спектральних характеристик природних об"єктів.
Інші види зйомок. У невидимій частині спектру при геологічних дослідженнях використовуються ультрафіолетова і лазерна зйомки.
Ультрафіолетова зйомка використовує частини невидимого спектру випромінювання між видимим спектром і рентгенівським випромінюванням (0,38-0,20 мкм).
Вивчення особливостей будови земної поверхні за допомогою ультрафіолетової зйомки ускладнене внаслідок сильного поглинання і розсіювання ґуф випромінювання атмосферою. При опроміненні УФ променями деякі геологічні тіла починають флуоресцувати, причому інтенсивність флуоресценції збільшується з підвищенням вмісту радіоактивних елементів.
Застосування лазерної зйомки основане на опроміненні монохроматичною хвилею лазера природних об"єктів. Якщо лазер встановити на літак і опромінити вздовж лінії польоту поверхню Землі , то відбиті від поверхні лазерні промені і опірне зображення самого джерела, що одночасно фіксуються на фотоплівці, дадуть інтерференційну картину - голограму, у вигляді чергування світлих і білих смуг, або світлих і темних плям.
Контрольні запитання
1 Що таке аерометоди?
2 Які аерометоди застосовуються в геології?
3 У чому полягає відмінність між плановою і перспективною аерофотозйомкою?
4 Які види аерофотоматеріалів Вам відомі?
5 Властивості аерофотознімків.
6 Що таке фотогенічність геологічних об"єктів?
7 Вкажіть прямі і побічні ознаки, які використовуються при геологічному дешифруванні аерофотознімків.
8 У чому полягає перевага кольорової і спктрозональної зйомок над чорно-білою?
9 Які задачі вирішуються при геологічному дешифруванні?
10 Особливості дешифруваня аерофотознімків районів з різними умовами залягання гірських порід.
11 Властивості і масштаби космофотознімків.
12 Які види космозйомки проводяться у невидимій області спектру?
13 Які переваги космофотознімків?