
- •28 Строение и свойства жидкого железа и его сплавов.
- •29 Шлаки сталеплавильных процессов
- •30. Особенности протекания окислительных процессов в электропечах.
- •31 Десульфурация стали.
- •2.7 Раскисление стали
- •2.8 Газы в стали
- •2.9 Производство стали в дуговых печах
- •2.10 Способы выплавки стали в основных дуговых печах
- •2.11 Производство стали в индукционных печах и установках для переплава
- •39 Выплавка конструкционной стали в дуговых печах.
- •40 Выплавка шарикоподшипниковой стали.
- •41. Свойства и дефекты электротехнической стали
- •42. Свойства и дефекты нержавеющей и жаропрочной стали
- •43.Классификация металлургических печей
- •Производство феросилиция
- •Производства силикокальцияCaSi
- •Производство углеродистого ферромарганца
- •Технология производства силикомарганцаSiMn
- •Технология производства углеродистого феррохрома FeCr
- •Технология производства ферровольфрама
- •50 Производство ферротитана и ферробора. Экзотермические ферросплавы
2.10 Способы выплавки стали в основных дуговых печах
Выплавка углеродистых сталей в основных электропечах: В шихту в зависимости от требуемого содержания углерода в стали вводят до 25-30% чушкового чугуна. С тем, чтобы совместить дефосфорацию с расплавлением в завалку дают 2-3% извести и до 1.5% железной руды или агломерата.
После расплавления шихты из печи самотеком удаляют максимальное количество шлака и начинают продувку ванны кислородом, подаваемым через фурму, которую вводят в рабочее пространство печи через свод. При повышенном содержании фосфора в металле перед продувкой в печь загружают известь и плавиковый шпат.
Продувку ведут до получения заданного содержания углерода в металле. После прекращения продувки в печь загружают силикомарганец или ферромарганец и при необходимости феррохром в количеств, обеспечивающем получение заданного содержания в стали марганца и хрома. Затем сталь выпускают в ковш, куда для получения требуемого содержания кремния и для раскисления вводят ферросилиций и алюминий. С тем чтобы предотвратить переход из шлака в металл окислов железа и снизить угар кремния и марганца печь наклоняют так, чтобы металл в течение первой трети длительности выпуска шел без шлака. Никель вследствие низкого сродства к кислороду при плавке не окисляется и его можно вводить в завалку.
При выплавке легированных кремнием сталей применяют технологию плавки с частичным раскислением шлака. Сущность технологии заключается в следующем: после окончания продувки в печь вводят ферромарганец для получения заданного содержания марганца в стали и немного 65 %-ного ферросилиция (до 2 кг на 1 т стали) и дают раскислительную шлаковую смесь - известь (10 кг/т), плавиковый шпат (2 кг/т), кокс (1-2 кг/т). После непродолжительной выдержки металл выпускают в ковш, куда для окончательного раскисления и легирования дают ферросилиций и алюминий. При работе по такой технологии учитывают, что диффузионное раскисление шлака сопровождается рефосфорацией - переходом из шлака в металл фосфора.
Технология одношлакового процесса позволяет сократить длительность плавки, расход электроэнергии, огнеупоров и шлакообразующих.
Выплавка легированных сталей в основных печах: При выплавке легированных сталей в дуговых печах порядок легирования зависит от сродства легирующих элементов к кислороду. Элементы, обладающие меньшим сродством к кислороду, чем железо (никель, молибден) во время плавки не окисляются и их вводят в начальные периоды плавки – никель в завалку, а молибден в конце плавления или в начале окислительного периода. Хром и марганец обладают большим сродством к кислороду, чем железо. Поэтому металл легируют хромом и марганцем после слива окислительного шлака в начале восстановительного периода. Вольфрам обладает большим сродством к кислороду, чем железо и он может окисляться и его обычного вводят в начале восстановительного периода. Особенность легирования вольфрамом заключается в том, что из-за высокой температуры плавления он растворяется медленно и для корректировки состава ферровольфрам можно присаживать в ванну не позднее, чем за 30 до выпуска. Кремний, ванадий и особенно титан и алюминий обладают большим сродством к кислороду и легко окисляются. Легирование стали феррованадием производят за 15-35 мин. до выпуска, ферросилиций – за 10-20 мин. до выпуска. Ферротитан вводят в печь за 5-15 мин. до выпуска, либо в ковш. Алюминий вводят за 2-3 мин. до выпуска в ковш.
Выплавка стали в кислых дуговых печах:
Электрические печи с кислой футеровкой обычно используют в литейных цехах при выплавке стали для фасонного литья. Преимуществом кислых печей по сравнению сосновными является более высокая стойкость футеровки; наряду с этим стоимость кислых огнеупоров примерно в 2.5 раза ниже стоимости основных. Поскольку при плаке стали для фасонного литья восстановительный период обычно отсутствует, длительность плавки в кислой печи меньше, чем в основной той же емкости; по этой причине, а также в связи с меньшей теплопроводностью кислой футеровки, более низким является и расход электроэнергии.
Основным недостатком кислых печей является то, что во время плавки из металла не удаляется сера и фосфор.
Завалка и расплавление шихты
Шихту составляют таким образом, чтобы содержание углерода после расплавления на 0.15-0.20% превышало содержание углерода в выплавляемой стали. Для повышения содержания углерода в шихту, наряду со стальным ломом, вводят кокс, электродный бой или чугун. Поскольку фосфор и сера под кислым шлаком не удаляются, используемый стальной лом должен содержать фосфора и серы примерно на 0.01% меньше, чем допускается в выплавляемой стали. Металлический лом не должен быть ржавым, так как окислы железа, растворяя кремнезем футеровки пода, разрушают её. В остальном требования к шихтовым материалам и порядку загрузки в печь такие же, как и при основном процессе.
Плавление в кислой печи длится 50-70 мин и протекает примерно так же, как и в основной печи. В период плавления происходит окисление кремния, марганца, железа, углерода. Образующиеся окислы принимают участие в формировании шлака. Поскольку количество этих окислов сравнительно невелико, в печь во время плавления забрасывают шлак от предыдущей плавки, сухой песок, формовочную землю и известняк, чтобы покрыть металл шлаком и уменьшить угар составляющих шихты.
К моменту расплавления шихты шлак имеет следующий состав, %: 40-50 SiO2; 15-30 FeO; 10-30 MnO; 2-6 Al2O3; 5-15 прочие окислы.
Окислительный период
Задачами окислительного периода при кислой плавке являются дегазация металла за счет кипения и нагрев металла. За время периода окисляется 0.10-0.20% углерода. Его окисление идет преимущественно за счет закиси железа, содержащейся в шлаке. Благодаря высокому содержанию FeO в шлаке окисление углерода и вызываемое им кипение ванны начинается без присадок окислителей, когда металл будет достаточно нагрет. Кипение можно интенсифицировать небольшими присадками извести или железной руды (порциями не более 0.2% от массы жидкого металла каждая). При этом происходит высвобождение FeO и повышение окислительной способности шлака.
По мере окисления углерода содержание закиси железа в шлаке уменьшается, а содержание SiO2 за счет разъедания футеровки возрастает; к концу окислительного периода оно составляет 55-60%. При высоком содержании SiO2 в шлаке и высокой температуре назначается восстановительного кремния по эндотермической реакции:
(SiO2) + 2[C] = [Si] + 2CO
Содержание кремния в металле в конце окислительного периода может достигать 0.2-0.4%. Раскисление стали При выплавке стали для фасонного литья восстановительный период отсутствует и сталь раскисляют осаждающим методом. Если содержание кремния в металле ниже, чем требуется в выплавляемой стали, то за 7-10 мин до выпуска в печь присаживают ферросилиций. Ферромарганец вводят либо в печь (за 3-5 мин выпуска), либо в ковш. Алюминий для окончательногораскисления вводят в ковш.
Материальный и тепловой балансы плавки стали в основной дуговой печи:
Основные статьи себестоимости стали (расход металлической шихты и расход топлива на 1 т жидкой стали) определяются тепловыми и материальными балансами. Данные расчетов баланса одной из плавок в 50-т печи по скрап-процессу приведены в табл. 1, а 185-т печи по скрап-рудному процессу при работе без продувки ванны кислородом — в табл. 2. На основе данных, приведенных в табл. 1 и 2, можно сделать следующие выводы: 1. Выход жидкой стали при скрап-рудном процессе (по отношению к массе чугуна и скрапа) значительно выше, чем при скрап-процессе, что обусловлено восстановлением железа из заваливаемой в печь железной руды. 2. Из атмосферы печи поступает кислорода значительно больше при скрап-процессе (при скрап-рудном процессе основное количество кислорода на окисление примесей поступает с заваливаемой железной рудой). 3. Общее количество образующегося за плавку шлака при скрап-рудном процессе больше, чем при скрап-процессе. 4. печь является очень несовершенным тепловым агрегатом, лишь небольшая доля общего прихода тепла расходуется полезно — на нагрев металла и шлака. Значительное же количество тепла уносится дымовыми газами и теряется (следует при этом иметь в виду, что часть тепла, уносимого из рабочего пространства газами, возвращается с нагретым в регенераторах воздухом и газом). 5. В отличие от конвертерных процессов доля прихода тепла от экзотермических реакций окисления примесей невелика, основную статью прихода тепла составляет тепло сгорания топлива. Таблица 1. Материальный и тепловой балансы плавка при основном скрап-процессе. Приход % Расход % Материальный баланс (на 100 единиц массы металлической muxты) Чугун чушковый 34,000 Сталь жидкая 96,402 Скрап 66,000 Корольки металла в шлаке 0,650 Ферромарганец 0,838 1,250 Шлак скаченный 5,339 Известняк в завалку 4,597 Шлак конечный в печи перед выпуском 8,013 Железная руда 2,000 СО от окисления углерода 3,051 Заправочный материал 3,000 СО от разложения известняка и извести 1,910 Материал свода 0.200 Влага, содержащаяся в известняке и железной руде 0,080 Кислород и атмосфера печи 2,560 Всего 115,445 Всего 115,445 Тепловой баланс рабочего пространства Экзотермические реакции выгорания примесей 8,30 На нагрев стали 15,43 Теплота шлакообразования 0,48 На нагрев шлака 3,44 Теплота сгорания топлива 61,67 Испарение влаги из руды и известняка 0.06 Физическое тепло воздуха нагретого в регенераторах 29,55 Разложение известняка 0,85 Всего 100,00 Уносится с продуктами 63,86 Потери в окружающую среду 16,36 Всего 100.00 Если составить тепловой баланс не рабочего пространства, а всей печи (без учета регенерации тепла), то можно приблизительно принимать, что 90 % прихода тепла — это тепло сгорания топлива (10 % — тепло экзотермических реакций окисления примесей). Что же касается расхода тепла, то он делится примерно на три равные доли: на процесс (нагрев металла и шлака); на потери через кладку, с охлаждающей водой и др.; на тепло, уносимое с продуктами сгорания. Таблица 2. Матеркальный и тепловой балансы плавка при основном мартеновском скрап-рудном процессе. Приход % Расход % Материальный баланс (на 100 единиц массы металлической muxты) Чугун жидкий 65,000 Сталь жидкая 103,522 Скрап 35,000 Корольки металла в шлаке 0,757 Ферромарганец 0,578 Шлак, спущенный из печи во время плавления 8,000 Железная руда в завалку 15,472 Шлак конечный в печи перед выпуском 7,355 Железная руда в период кипения 2,000 СО от окисления углерода 6,064 Известняк в завалку 4,755 С02 от разложения известняка, извести, доломита 2,203 Известь в период кипения 0,672 Влага, содержащаяся в известняке и железной руде 0,151 Заправочный материал (доломит и магнезит) 3,000 Всего 128,052 Материал свода 0,200 Кислород из атмосферы печи 1,375 Всего 128,052 Тепловой баланс рабочего пространства мартеновской печи Тепло жидкого чугуна 10,30 На нагрев стали 20,10 Экзотермические реакции выгорания примесей 8,52 На нагрев шлака 4,77 Теплота шлакообразования 0,58 Испарение влаги из руды и известняка 0,13 Тепло сгорания топлива 48,75 Разложение известняка 1,05 Физическое тепло воздуха нагретого в регенераторах 20,93 Уносится с продуктами сгорания 58,90 Физическое тепло газа нагретого в регенераторах 10,92 Потери в окружающую среду и с охлаждением 15,05 Всего 100,00 Всего 100.00 Следует иметь в виду, что во всех экономических расчетах расходы шихты, топлива и других материалов относят не к жидкой стали (как в расчете баланса), а к годной стали. Выход 1 т годной стали равен 1 т жидкой стали минус потери при разливке, брак и др. С уменьшением этих потерь величина выхода годной стали приближается к величине выхода жидкой стали, в результате чего уменьшается расход шихты и других материалов на 1 т годной стали. Уменьшить в тепловом балансе абсолютные величины статей расхода тепла на нагрев стали и шлака невозможно, так как сталь и шлак необходимо нагревать до определенной температуры. Однако повысить долю этих статей в тепловом балансе можно, уменьшив другие статьи расходной части баланса: количество тепла, уносимого продуктами сгорания (в результате улучшения теплопередачи), и потери тепла (в окружающую среду, при охлаждении и др.) в результате сокращения продолжительности плавки и улучшения конструкции печи. Все мероприятия, способствующие сокращению продолжительности плавки, влияют на тепловой баланс таким образом, что доля полезно расходуемого тепла (на нагрев стали и шлака) возрастает. К этим мероприятиям прежде всего относятся: сокращение продолжительности завалки шихты; применение кислорода (вместо воздуха) для повышения температуры факела, в результате чего улучшается теплопередача и продолжительность плавки сокращается; подача в факел высокоскоростной струи кислорода, сжатого воздуха или перегретого пара, в результате чего повышается кинетическая энергия факела, улучшается его излучательная способность и возрастает доля тепла, передаваемого конвекцией; ускорение реакций окисления примесей при замене железной руды газообразным кислородом или сжатым воздухом; автоматизация работы печи с целью организации ведения плавки при оптимальных расходах топлива и добавочных материалов. Цель почти всех технико-экономических мероприятий, проводимых в мартеновских цехах, — улучшение показателей материального и теплового балансов, так как эти показатели определяют в основном себестоимость стали.