
- •Введение
- •1. Общие сведения о системах автоматического регулирования
- •1.1. Основные задачи
- •1.2. Понятие об автоматическом регулировании
- •1.3. Разомкнутые и замкнутые системы
- •1.4. Системы автоматической стабилизации
- •1.5. Следящие системы
- •1.6. Непрерывные и прерывистые системы
- •Контрольные вопросы
- •2. Линейные и нелинейные системы автоматического регулирования
- •2.1. Общие положения
- •2.2. Общий метод линеаризации
- •Контрольные вопросы
- •3. Динамические звенья и их характеристики
- •3.1. Общие положения
- •3.2. Передаточные функции динамических звеньев
- •3.3. Временные характеристики звеньев
- •3.4. Частотные характеристики звеньев
- •Афчх для декартовых координат
- •Афчх для полярных координат
- •3.5. Логарифмические частотные характеристики звеньев
- •3.6. Безынерцинное звено
- •3.7. Апериодическое звено первого порядка
- •3.8. Апериодическое звено второго порядка
- •3.9. Идеальное интегрирующее звено
- •3.10. Инерционное интегрирующее звено
- •3.11. Идеальное дифференцирующее звено
- •3.12. Реальное дифференцирующее звено
- •3.13. Неустойчивые звенья
- •Контрольные вопросы
- •4. Составление и анализ исходных дифференциальных уравнений Систем Автоматического регулирования
- •4.1. Общий метод составления уравнений
- •4.2. Передаточные функции сар
- •4.3. Составление уравнений по типовым динамическим звеньям
- •1. Последовательное соединение звеньев.
- •2. Параллельное соединение звеньев.
- •3. Локальная обратная связь.
- •Контрольные вопросы
- •5. Устойчивость линейных систем автоматического регулирования
- •5.1. Понятие устойчивости линейных систем
- •1) Наличие нулевого корня;
- •2) Наличие пары чисто мнимых корней;
- •3) Наличие бесконечного корня.
- •5.2. Алгебраический критерий устойчивости
- •1. Уравнение первого порядка
- •2. Уравнение второго порядка
- •3. Уравнение третьего порядка
- •4. Уравнение четвертого порядка
- •5.3. Критерий устойчивости Михайлова
- •Построение кривой Михайлова
- •5.4. Определение устойчивости по логарифмическим характеристикам
- •Контрольные вопросы
- •6. Построение кривой переходного процесса в системе автоматического регулирования
- •6.1. Общие положения
- •6.2. Классический метод
- •6.3. Метод трапецеидальных вещественных характеристик
- •Общий вид таблицы h-функций
- •1. Сумма высот всех вписанных трапеций должна равняться суммарному изменению ординаты вещественной частотной характеристики.
- •2. Боковые наклонные грани прямоугольных трапеций должны как можно точнее соответствовать криволинейным участкам характеристики вещественной частотной характеристики.
- •Контрольные вопросы
- •7. Оценка качества регулирования
- •7.1. Общие положения
- •7.2. Точность в типовых режимах
- •7.3. Определение показателей качества регулирования по переходной характеристике
- •7.4. Приближенная оценка вида переходного процесса по вещественной частотной характеристике
- •7.5. Корневые методы оценки качества
- •7.6. Частотные критерии качества
- •Контрольные вопросы
- •8. Элементы синтеза систем автоматического регулирования
- •8.1. Общие положения
- •8.2. Метод логарифмических амплитудных характеристик
- •8.3. Синтез последовательного корректирующего устройства
- •Контрольные вопросы
- •9. Нелинейные Системы автоматического регулирования
- •9.1. Методы исследования процессов в нелинейных системах
- •9.2. Метод фазовой плоскости
- •Предельный цикл
- •Предельный цикл
- •Контрольные вопросы
- •Заключение
- •Библиографический список
- •Теория систем автоматического управления и регулирования
- •6 80021, Г. Хабаровск, ул. Серышева, 47.
2. Линейные и нелинейные системы автоматического регулирования
2.1. Общие положения
Динамические процессы в системах автоматического регулирования описываются дифференциальными уравнениями.
В линейных системах процессы описываются при помощи линейных дифференциальных уравнений.
Чтобы система регулирования была линейной, необходимо (но недостаточно) иметь статические характеристики всех звеньев в виде прямых линий.
Статическая характеристика звена это зависимость между входным и выходным сигналом в установившемся режиме (без учета переходных процессов).
В действительности реальные статические характеристики в большинстве случаев не являются прямолинейными. Поэтому чтобы рассчитать реальную систему как линейную, необходимо все криволинейные статические характеристики звеньев на рабочих участках, которые используются в данном процессе регулирования, заменить прямолинейными отрезками. Этот процесс называется линеаризацией. Большинство систем непрерывного регулирования поддаётся такой линеаризации.
Линейные системы разделяются на обыкновенные линейные системы и особые линейные системы.
Обыкновенные линейные САР это системы, все звенья которых описываются обыкновенными линейными дифференциальными уравнениями с постоянными коэффициентами.
К особым линейным САР относят:
а) системы с переменными по времени параметрами, которые описываются линейными дифференциальными уравнениями с переменными коэффициентами;
б) системы с распределёнными параметрами, где приходится иметь дело с уравнениями в частных производных, и системы с временным запаздыванием, описываемые уравнениями с запаздывающим аргументом;
в) импульсные системы, где приходится иметь дело с разностными уравнениями.
Расчеты линейных систем хорошо разработаны и более просты для практического применения. Расчеты же нелинейных систем часто связаны с большими трудностями.
В нелинейных системах процессы описываются нелинейными дифференциальными уравнениями.
В нелинейных системах при анализе процесса регулирования приходится учитывать нелинейность статической характеристики хотя бы в одном её звене.
Иногда нелинейные звенья специально вводятся в систему для обеспечения наибольшего быстродействия или других желаемых качеств.
К нелинейным системам относятся релейные системы, так как релейная характеристика (рис. 2.1, а и б) не может быть заменена одной прямой линией. Нелинейным будет звено, в характеристике которого имеется зона нечувствительности (рис. 2.1, в).
Явления насыщения или механического ограничения хода приводят к характеристике с ограничением линейной зависимости на концах (рис. 2.1, г). Эта характеристика также должна считаться нелинейной, если рассматриваются такие процессы, когда рабочая точка выходит за пределы линейного участка характеристики.
К нелинейным зависимостям относятся также гистерезисная кривая (рис. 2.1, д), характеристика зазора в механической передаче (рис. 2.1, е), сухое трение (рис. 2.1, ж), квадратичное трение (рис. 2.1, и) и др. В последних двух характеристиках x1 обозначает скорость перемещения, а x2 – силу или момент трения.
Нелинейной является вообще любая криволинейная зависимость между выходным и входным сигналами звена (рис. 2.1, к). Это нелинейности простейшего типа. Кроме того, нелинейности могут входить в дифференциальные уравнения в виде произведения переменных величин и их производных, а также в виде более сложных функциональных зависимостей.
Не все нелинейные зависимости поддаются простой линеаризации. Так, например, линеаризация не может быть сделана для характеристик, изображенных на рис. 2.1, а или на рис. 2.1, е. Подобные сложные случаи будут рассмотрены далее.
Рис. 2.1. Характеристики нелинейных звеньев