
- •Введение
- •1. Общие сведения о системах автоматического регулирования
- •1.1. Основные задачи
- •1.2. Понятие об автоматическом регулировании
- •1.3. Разомкнутые и замкнутые системы
- •1.4. Системы автоматической стабилизации
- •1.5. Следящие системы
- •1.6. Непрерывные и прерывистые системы
- •Контрольные вопросы
- •2. Линейные и нелинейные системы автоматического регулирования
- •2.1. Общие положения
- •2.2. Общий метод линеаризации
- •Контрольные вопросы
- •3. Динамические звенья и их характеристики
- •3.1. Общие положения
- •3.2. Передаточные функции динамических звеньев
- •3.3. Временные характеристики звеньев
- •3.4. Частотные характеристики звеньев
- •Афчх для декартовых координат
- •Афчх для полярных координат
- •3.5. Логарифмические частотные характеристики звеньев
- •3.6. Безынерцинное звено
- •3.7. Апериодическое звено первого порядка
- •3.8. Апериодическое звено второго порядка
- •3.9. Идеальное интегрирующее звено
- •3.10. Инерционное интегрирующее звено
- •3.11. Идеальное дифференцирующее звено
- •3.12. Реальное дифференцирующее звено
- •3.13. Неустойчивые звенья
- •Контрольные вопросы
- •4. Составление и анализ исходных дифференциальных уравнений Систем Автоматического регулирования
- •4.1. Общий метод составления уравнений
- •4.2. Передаточные функции сар
- •4.3. Составление уравнений по типовым динамическим звеньям
- •1. Последовательное соединение звеньев.
- •2. Параллельное соединение звеньев.
- •3. Локальная обратная связь.
- •Контрольные вопросы
- •5. Устойчивость линейных систем автоматического регулирования
- •5.1. Понятие устойчивости линейных систем
- •1) Наличие нулевого корня;
- •2) Наличие пары чисто мнимых корней;
- •3) Наличие бесконечного корня.
- •5.2. Алгебраический критерий устойчивости
- •1. Уравнение первого порядка
- •2. Уравнение второго порядка
- •3. Уравнение третьего порядка
- •4. Уравнение четвертого порядка
- •5.3. Критерий устойчивости Михайлова
- •Построение кривой Михайлова
- •5.4. Определение устойчивости по логарифмическим характеристикам
- •Контрольные вопросы
- •6. Построение кривой переходного процесса в системе автоматического регулирования
- •6.1. Общие положения
- •6.2. Классический метод
- •6.3. Метод трапецеидальных вещественных характеристик
- •Общий вид таблицы h-функций
- •1. Сумма высот всех вписанных трапеций должна равняться суммарному изменению ординаты вещественной частотной характеристики.
- •2. Боковые наклонные грани прямоугольных трапеций должны как можно точнее соответствовать криволинейным участкам характеристики вещественной частотной характеристики.
- •Контрольные вопросы
- •7. Оценка качества регулирования
- •7.1. Общие положения
- •7.2. Точность в типовых режимах
- •7.3. Определение показателей качества регулирования по переходной характеристике
- •7.4. Приближенная оценка вида переходного процесса по вещественной частотной характеристике
- •7.5. Корневые методы оценки качества
- •7.6. Частотные критерии качества
- •Контрольные вопросы
- •8. Элементы синтеза систем автоматического регулирования
- •8.1. Общие положения
- •8.2. Метод логарифмических амплитудных характеристик
- •8.3. Синтез последовательного корректирующего устройства
- •Контрольные вопросы
- •9. Нелинейные Системы автоматического регулирования
- •9.1. Методы исследования процессов в нелинейных системах
- •9.2. Метод фазовой плоскости
- •Предельный цикл
- •Предельный цикл
- •Контрольные вопросы
- •Заключение
- •Библиографический список
- •Теория систем автоматического управления и регулирования
- •6 80021, Г. Хабаровск, ул. Серышева, 47.
1.6. Непрерывные и прерывистые системы
Непрерывной САР называется такая система, в которой при непрерывном изменении регулируемой величины происходит непрерывное изменение всех величин, характеризующих состояние системы.
Прерывистой САР называется такая система, в которой хотя бы в одном звене нарушается непрерывное изменение какой-либо величины при непрерывном изменении регулируемой величины.
Прерывистые системы делятся на релейные и импульсные (дискретные) системы.
Релейной САР называется такая система, в которой имеется звено со статической характеристикой релейного типа. Характеристика релейного типа представляет собой такую зависимость между выходным и входным сигналом данного звена, когда при непрерывном изменении входного сигнала выходной меняется скачком при определенных значениях входного сигнала, а между ними остается постоянным.
Рассмотрим в качестве примера регулятор скорости электродвигателя небольшой мощности (рис. 1.9). При непрерывном изменении регулируемой величины n происходит непрерывное перемещение муфты S центробежного механизма M. В определённом положении муфты замкнется контакт K, который шунтирует сопротивление R, в результате чего сопротивление цепи возбуждения двигателя скачком уменьшится на величину R. При дальнейшем движении муфты М влево (при дальнейшем росте скорости) контакт будет оставаться замкнутым, и сопротивление цепи возбуждения будет сохраняться постоянным.
Рис. 1.9. Релейная система регулирования
Снижение скорости вращения вызовет движение муфты М вправо. В некотором её положении также скачком при размыкании контакта происходит возрастание сопротивления цепи на величину R. В результате статическая характеристика муфты совместно с контактом может быть представлена так, как это изображено на рис. 1.9.
Статические характеристики остальных звеньев этой системы являются непрерывными. Однако вся система должна рассматриваться как релейная.
Импульсной системой автоматического регулирования называется такая система, в которой прерывистым звеном является импульсный элемент. Импульсный элемент это устройство, которое преобразует непрерывное изменение входной величины в отдельные, равностоящие друг от друга импульсы выходной величины.
Наиболее часто используются два типа импульсных элементов. Импульсные элементы первого типа формируют на выходе равностоящие импульсы одинаковой продолжительности, амплитуда которых пропорциональна входной величине. Импульсные элементы второго типа формируют на выходе импульсы одинаковой амплитуды, а продолжительность импульса пропорциональна входной величине. При этом знак импульса меняется при изменении знака входной величины.
Импульсный характер работы автоматической системы может быть обусловлен также применением в ней вычислительных машин.
Контрольные вопросы
1. Что является главной задачей ТАУ?
2. Дайте определение системы автоматического регулирования.
3. Охарактеризуйте разомкнутые и замкнутые САР.
4. Опишите системы автоматической стабилизации.
5. Охарактеризуйте следящие системы.
6. В чем отличия непрерывных и прерывистых САР?