
- •Введение
- •1. Общие сведения о системах автоматического регулирования
- •1.1. Основные задачи
- •1.2. Понятие об автоматическом регулировании
- •1.3. Разомкнутые и замкнутые системы
- •1.4. Системы автоматической стабилизации
- •1.5. Следящие системы
- •1.6. Непрерывные и прерывистые системы
- •Контрольные вопросы
- •2. Линейные и нелинейные системы автоматического регулирования
- •2.1. Общие положения
- •2.2. Общий метод линеаризации
- •Контрольные вопросы
- •3. Динамические звенья и их характеристики
- •3.1. Общие положения
- •3.2. Передаточные функции динамических звеньев
- •3.3. Временные характеристики звеньев
- •3.4. Частотные характеристики звеньев
- •Афчх для декартовых координат
- •Афчх для полярных координат
- •3.5. Логарифмические частотные характеристики звеньев
- •3.6. Безынерцинное звено
- •3.7. Апериодическое звено первого порядка
- •3.8. Апериодическое звено второго порядка
- •3.9. Идеальное интегрирующее звено
- •3.10. Инерционное интегрирующее звено
- •3.11. Идеальное дифференцирующее звено
- •3.12. Реальное дифференцирующее звено
- •3.13. Неустойчивые звенья
- •Контрольные вопросы
- •4. Составление и анализ исходных дифференциальных уравнений Систем Автоматического регулирования
- •4.1. Общий метод составления уравнений
- •4.2. Передаточные функции сар
- •4.3. Составление уравнений по типовым динамическим звеньям
- •1. Последовательное соединение звеньев.
- •2. Параллельное соединение звеньев.
- •3. Локальная обратная связь.
- •Контрольные вопросы
- •5. Устойчивость линейных систем автоматического регулирования
- •5.1. Понятие устойчивости линейных систем
- •1) Наличие нулевого корня;
- •2) Наличие пары чисто мнимых корней;
- •3) Наличие бесконечного корня.
- •5.2. Алгебраический критерий устойчивости
- •1. Уравнение первого порядка
- •2. Уравнение второго порядка
- •3. Уравнение третьего порядка
- •4. Уравнение четвертого порядка
- •5.3. Критерий устойчивости Михайлова
- •Построение кривой Михайлова
- •5.4. Определение устойчивости по логарифмическим характеристикам
- •Контрольные вопросы
- •6. Построение кривой переходного процесса в системе автоматического регулирования
- •6.1. Общие положения
- •6.2. Классический метод
- •6.3. Метод трапецеидальных вещественных характеристик
- •Общий вид таблицы h-функций
- •1. Сумма высот всех вписанных трапеций должна равняться суммарному изменению ординаты вещественной частотной характеристики.
- •2. Боковые наклонные грани прямоугольных трапеций должны как можно точнее соответствовать криволинейным участкам характеристики вещественной частотной характеристики.
- •Контрольные вопросы
- •7. Оценка качества регулирования
- •7.1. Общие положения
- •7.2. Точность в типовых режимах
- •7.3. Определение показателей качества регулирования по переходной характеристике
- •7.4. Приближенная оценка вида переходного процесса по вещественной частотной характеристике
- •7.5. Корневые методы оценки качества
- •7.6. Частотные критерии качества
- •Контрольные вопросы
- •8. Элементы синтеза систем автоматического регулирования
- •8.1. Общие положения
- •8.2. Метод логарифмических амплитудных характеристик
- •8.3. Синтез последовательного корректирующего устройства
- •Контрольные вопросы
- •9. Нелинейные Системы автоматического регулирования
- •9.1. Методы исследования процессов в нелинейных системах
- •9.2. Метод фазовой плоскости
- •Предельный цикл
- •Предельный цикл
- •Контрольные вопросы
- •Заключение
- •Библиографический список
- •Теория систем автоматического управления и регулирования
- •6 80021, Г. Хабаровск, ул. Серышева, 47.
1.5. Следящие системы
Следящие системы относятся к системам регулирования, работающим по замкнутому циклу. Следящей системой называется такая автоматическая система, которая предназначается для воспроизведения на управляемом объекте (на выходе системы) произвольного закона изменения некоторой величины во времени, задаваемого на входе этой системы.
В настоящее время существует значительное количество разновидностей следящих систем. Назовем наиболее важные из них.
1. Следящие системы воспроизведения угла поворота осуществляют поворот исполнительной оси на такой угол, который в каждый момент времени равен углу поворота другой оси, называемой командной.
Пример – индикация позиции группового контроллера электровоза. Разновидностью этих следящих систем являются системы, осуществляющие не вращательное движение, а линейное перемещение управляемого объекта.
2. Следящие системы воспроизведения скорости вращения осуществляют вращение исполнительной оси так, чтобы в каждый момент времени скорость её вращения была пропорциональна некоторой входной величине.
Например, углу поворота командной оси, входному напряжению и т. п. В этом случае угол поворота исполнительной оси будет пропорционален интегралу по времени от входной величины, т. е. система будет обладать интегрирующими свойствами. Поэтому часто используется название интегрирующий привод.
3. Сглаживающие следящие системы работают по принципу систем воспроизведения угла. Отличие заключается в том, что на входе этих систем действуют одновременно полезный сигнал и помеха. Назначением сглаживающей системы является наиболее точное воспроизведение на выходе полезного сигнала при наиболее сильном подавлении помехи.
Сглаживающие следящие системы строятся обычно на базе каких-либо интегрирующих элементов, например интегрирующих приводов.
4. Гироскопические следящие системы строятся на базе гироскопических элементов.
Разновидностью их являются силовые гироскопические стабилизаторы, в которых для стабилизации пространственного положения используется слежение момента двигателя за моментом внешних возмущающих сил. Другой разновидностью являются гироскопические устройства, в которых осуществляется изменение пространственного положения управляемого объекта в соответствии с законом изменения входной величины.
5. Электрические следящие системы представляют собой усилители с сильной отрицательной обратной связью. Они предназначаются для точного воспроизведения на некотором приемнике входного напряжения.
В качестве примера можно привести операционные усилители постоянного тока.
Большое значение начинают приобретать в настоящее время самонастраивающиеся следящие системы или системы с саморегулированием параметров, в которые вводятся специальные дополнительные устройства, автоматически изменяющие некоторые параметры системы в зависимости от характера полезного входного сигнала и помех с таким расчётом, чтобы всегда обеспечивать наилучшее качество слежения.
Впервые следящие системы были применены российскими инженерами Петрушевским и Давыдовым в конце XIX в. Следящая система российского офицера Давыдова осуществила централизованное дистанционное автоматическое управление несколькими орудиями на морской артиллерийской батарее, получившей название «Не тронь меня».