
- •Введение
- •1. Общие сведения о системах автоматического регулирования
- •1.1. Основные задачи
- •1.2. Понятие об автоматическом регулировании
- •1.3. Разомкнутые и замкнутые системы
- •1.4. Системы автоматической стабилизации
- •1.5. Следящие системы
- •1.6. Непрерывные и прерывистые системы
- •Контрольные вопросы
- •2. Линейные и нелинейные системы автоматического регулирования
- •2.1. Общие положения
- •2.2. Общий метод линеаризации
- •Контрольные вопросы
- •3. Динамические звенья и их характеристики
- •3.1. Общие положения
- •3.2. Передаточные функции динамических звеньев
- •3.3. Временные характеристики звеньев
- •3.4. Частотные характеристики звеньев
- •Афчх для декартовых координат
- •Афчх для полярных координат
- •3.5. Логарифмические частотные характеристики звеньев
- •3.6. Безынерцинное звено
- •3.7. Апериодическое звено первого порядка
- •3.8. Апериодическое звено второго порядка
- •3.9. Идеальное интегрирующее звено
- •3.10. Инерционное интегрирующее звено
- •3.11. Идеальное дифференцирующее звено
- •3.12. Реальное дифференцирующее звено
- •3.13. Неустойчивые звенья
- •Контрольные вопросы
- •4. Составление и анализ исходных дифференциальных уравнений Систем Автоматического регулирования
- •4.1. Общий метод составления уравнений
- •4.2. Передаточные функции сар
- •4.3. Составление уравнений по типовым динамическим звеньям
- •1. Последовательное соединение звеньев.
- •2. Параллельное соединение звеньев.
- •3. Локальная обратная связь.
- •Контрольные вопросы
- •5. Устойчивость линейных систем автоматического регулирования
- •5.1. Понятие устойчивости линейных систем
- •1) Наличие нулевого корня;
- •2) Наличие пары чисто мнимых корней;
- •3) Наличие бесконечного корня.
- •5.2. Алгебраический критерий устойчивости
- •1. Уравнение первого порядка
- •2. Уравнение второго порядка
- •3. Уравнение третьего порядка
- •4. Уравнение четвертого порядка
- •5.3. Критерий устойчивости Михайлова
- •Построение кривой Михайлова
- •5.4. Определение устойчивости по логарифмическим характеристикам
- •Контрольные вопросы
- •6. Построение кривой переходного процесса в системе автоматического регулирования
- •6.1. Общие положения
- •6.2. Классический метод
- •6.3. Метод трапецеидальных вещественных характеристик
- •Общий вид таблицы h-функций
- •1. Сумма высот всех вписанных трапеций должна равняться суммарному изменению ординаты вещественной частотной характеристики.
- •2. Боковые наклонные грани прямоугольных трапеций должны как можно точнее соответствовать криволинейным участкам характеристики вещественной частотной характеристики.
- •Контрольные вопросы
- •7. Оценка качества регулирования
- •7.1. Общие положения
- •7.2. Точность в типовых режимах
- •7.3. Определение показателей качества регулирования по переходной характеристике
- •7.4. Приближенная оценка вида переходного процесса по вещественной частотной характеристике
- •7.5. Корневые методы оценки качества
- •7.6. Частотные критерии качества
- •Контрольные вопросы
- •8. Элементы синтеза систем автоматического регулирования
- •8.1. Общие положения
- •8.2. Метод логарифмических амплитудных характеристик
- •8.3. Синтез последовательного корректирующего устройства
- •Контрольные вопросы
- •9. Нелинейные Системы автоматического регулирования
- •9.1. Методы исследования процессов в нелинейных системах
- •9.2. Метод фазовой плоскости
- •Предельный цикл
- •Предельный цикл
- •Контрольные вопросы
- •Заключение
- •Библиографический список
- •Теория систем автоматического управления и регулирования
- •6 80021, Г. Хабаровск, ул. Серышева, 47.
9.2. Метод фазовой плоскости
Метод изображения процессов с помощью фазовых траекторий в принципе может использоваться для систем, описываемых дифференциальным уравнением любого порядка. Однако эти траектории должны рассматриваться в n-мерном фазовом пространстве, где n – порядок дифференциального уравнения. Ввиду серьезных трудностей, возникающих при рассмотрении n-мерного пространства при n > 3, метод фазовых траекторий находит применение только для систем второго порядка, где пространство превращается в плоскость, и в некоторых случаях для систем третьего порядка.
Рассмотрим применение этого метода для систем второго порядка, когда фазовые траектории располагаются на фазовой плоскости.
Фазовая плоскость это координатная плоскость, где по оси абсцисс откладывается сама переменная, для которой исследуется переходный процесс, а по оси ординат – скорость изменения (первая производная) этой переменной (иногда другая переменная, характеризующая процесс в системе во втором порядке).
Н
Рис. 9.1. Фазовая плоскость
а рис. 9.1 изображена фазовая плоскость. По оси абсцисс откладывается исследуемая величина х, а по оси ординат – ее производная y = dx / dt. Состояние системы второго порядка полностью определяется заданием этих двух координат. Каждому состоянию системы соответствует определенная точка на фазовой плоскости, например, точка М на рис. 9.1. Эта точка называется изображающей точкой.Если в исследуемой системе протекает некоторый процесс, то изображающая точка будет двигаться по плоскости, прочерчивая кривую, которая называется фазовой траекторией. Направление движения изображающей точки принято обозначать на траектории стрелками.
Основные свойства фазовой траектории.
1. В
верхней полуплоскости направление
движения изображающей точки может быть
только слева направо. Это вытекает
из того, что в верхней полуплоскости
> 0,
и величина х должна возрастать. В
нижней полуплоскости изображающая
точка может двигаться только справа
налево.
2. Фазовая траектория может пересекать ось абсцисс только под прямым углом. Это вытекает из того, что в точке пересечения производная у = = 0, и, следовательно, координата х должна иметь экстремальное значение.
3. Замкнутым фазовым траекториям соответствуют периодические процессы.
Рассмотрим изображение типичных процессов на фазовой плоскости.
1. Затухающий
колебательный процесс. Начальная
точка процесса (рис. 9.2, а) имеет
некоторые определенные значения: x = x0
и
=
= у0.
На фазовой плоскости (рис. 9.2, б)
она показана точкой М0(х0,
у0).
Рис. 9.2. Затухающий колебательный процесс
В начальной части процесса до точки 1 величина х увеличивается, а производная = у уменьшается.
Изображающая точка на фазовой плоскости будет двигаться по кривой М0 – 1. В точке 1 имеет место максимум величины х, и = 0. Затем процесс идет с уменьшением координаты х, т. е. с отрицательной производной < 0. Начало координат изображает равновесное состояние системы – установившийся режим (х = 0, у = = 0).
Затухающие колебания свидетельствуют об устойчивости этого равновесного состояния. Начало координат фазовой плоскости в этом случае является особой точкой плоскости, называемой устойчивым фокусом (рис. 9.2, б).
2. Расходящийся колебательный процесс. Аналогичным рассуждением можно показать, что фазовым портретом расходящихся колебаний (рис. 9.3, а) будет спираль, удаляющаяся от начала координат (рис. 9.3, б).
Рис. 9.3. Расходящийся колебательный процесс
Если этот процесс имеет место при сколь угодно малом начальном отклонении, то это свидетельствует о неустойчивости равновесного состояния (х = 0, у = 0). Начало координат фазовой плоскости в этом случае называется неустойчивым фокусом.
3. Апериодический затухающий процесс (рис. 9.4, а) на фазовой плоскости изобразится в виде кривой, которая вливается в начало координат (рис. 9.4, в), причем изображающая точка движется по этой кривой так, что к началу координат она приближается при t . Начало координат называется тогда устойчивым узлом.
Рис. 9.4. Затухающие апериодические процессы
4. Апериодический расходящийся процесс (рис. 9.5, а) изобразится в виде кривой, удаляющейся на фазовой плоскости от начала координат (рис. 9.5, б). Если процесс расходится при сколь угодно малом начальном отклонении, то начало координат называется неустойчивым узлом.
Рис. 9.5. Расходящийся апериодический процесс
5. Периодический колебательный процесс (рис. 9.6, а) изобразится на фазовой плоскости в виде замкнутой кривой, циклом (рис. 9.6, б). Для синусоидальных колебаний цикл имеет вид эллипса, который подбором масштабов по осям может быть превращен в окружность.
Для несинусоидальных колебаний цикл имеет вид произвольной замкнутой кривой. В том случае, когда несколько циклов окружают начало координат, приближаясь к нему бесконечно близко, оно называется особой точкой «центр».
Рис. 9.6. Периодический процесс