
- •Введение
- •1. Общие сведения о системах автоматического регулирования
- •1.1. Основные задачи
- •1.2. Понятие об автоматическом регулировании
- •1.3. Разомкнутые и замкнутые системы
- •1.4. Системы автоматической стабилизации
- •1.5. Следящие системы
- •1.6. Непрерывные и прерывистые системы
- •Контрольные вопросы
- •2. Линейные и нелинейные системы автоматического регулирования
- •2.1. Общие положения
- •2.2. Общий метод линеаризации
- •Контрольные вопросы
- •3. Динамические звенья и их характеристики
- •3.1. Общие положения
- •3.2. Передаточные функции динамических звеньев
- •3.3. Временные характеристики звеньев
- •3.4. Частотные характеристики звеньев
- •Афчх для декартовых координат
- •Афчх для полярных координат
- •3.5. Логарифмические частотные характеристики звеньев
- •3.6. Безынерцинное звено
- •3.7. Апериодическое звено первого порядка
- •3.8. Апериодическое звено второго порядка
- •3.9. Идеальное интегрирующее звено
- •3.10. Инерционное интегрирующее звено
- •3.11. Идеальное дифференцирующее звено
- •3.12. Реальное дифференцирующее звено
- •3.13. Неустойчивые звенья
- •Контрольные вопросы
- •4. Составление и анализ исходных дифференциальных уравнений Систем Автоматического регулирования
- •4.1. Общий метод составления уравнений
- •4.2. Передаточные функции сар
- •4.3. Составление уравнений по типовым динамическим звеньям
- •1. Последовательное соединение звеньев.
- •2. Параллельное соединение звеньев.
- •3. Локальная обратная связь.
- •Контрольные вопросы
- •5. Устойчивость линейных систем автоматического регулирования
- •5.1. Понятие устойчивости линейных систем
- •1) Наличие нулевого корня;
- •2) Наличие пары чисто мнимых корней;
- •3) Наличие бесконечного корня.
- •5.2. Алгебраический критерий устойчивости
- •1. Уравнение первого порядка
- •2. Уравнение второго порядка
- •3. Уравнение третьего порядка
- •4. Уравнение четвертого порядка
- •5.3. Критерий устойчивости Михайлова
- •Построение кривой Михайлова
- •5.4. Определение устойчивости по логарифмическим характеристикам
- •Контрольные вопросы
- •6. Построение кривой переходного процесса в системе автоматического регулирования
- •6.1. Общие положения
- •6.2. Классический метод
- •6.3. Метод трапецеидальных вещественных характеристик
- •Общий вид таблицы h-функций
- •1. Сумма высот всех вписанных трапеций должна равняться суммарному изменению ординаты вещественной частотной характеристики.
- •2. Боковые наклонные грани прямоугольных трапеций должны как можно точнее соответствовать криволинейным участкам характеристики вещественной частотной характеристики.
- •Контрольные вопросы
- •7. Оценка качества регулирования
- •7.1. Общие положения
- •7.2. Точность в типовых режимах
- •7.3. Определение показателей качества регулирования по переходной характеристике
- •7.4. Приближенная оценка вида переходного процесса по вещественной частотной характеристике
- •7.5. Корневые методы оценки качества
- •7.6. Частотные критерии качества
- •Контрольные вопросы
- •8. Элементы синтеза систем автоматического регулирования
- •8.1. Общие положения
- •8.2. Метод логарифмических амплитудных характеристик
- •8.3. Синтез последовательного корректирующего устройства
- •Контрольные вопросы
- •9. Нелинейные Системы автоматического регулирования
- •9.1. Методы исследования процессов в нелинейных системах
- •9.2. Метод фазовой плоскости
- •Предельный цикл
- •Предельный цикл
- •Контрольные вопросы
- •Заключение
- •Библиографический список
- •Теория систем автоматического управления и регулирования
- •6 80021, Г. Хабаровск, ул. Серышева, 47.
3.13. Неустойчивые звенья
Рассмотренные выше звенья позиционного типа относятся к устойчивым звеньям или звеньям с самовыравниванием. Под самовыравниванием понимается способность звена самопроизвольно приходить к новому установившемуся режиму при ограниченном изменении входной величины или возмущающего воздействия. Термин «самовыравнивание» обычно применяется для звеньев, представляющих собой объекты регулирования.
Существуют звенья, у которых ограниченное изменение входной величины или возмущающего воздействия не вызывает прихода звена к новому установившемуся состоянию, а выходная величина имеет тенденцию неограниченного возрастания во времени. К таким звеньям относятся, например, звенья интегрирующего типа. Они были рассмотрены выше.
Существуют звенья, у которых этот процесс выражен еще заметнее. Это объясняется наличием положительных вещественных корней или комплексных корней с положительной вещественной частью в характеристическом уравнении (в знаменателе передаточной функции, приравненном нулю), в результате чего звено относится к категории неустойчивых звеньев. Рассмотрим в качестве примера звено, описываемое дифференциальным уравнением
Рис. 3.32.
Переходная функция неустойчивого звена
в операторной форме
.
(3.87)
Передаточная функция этого звена
.
(3.88)
Переходная функция звена представляет собой показательную функцию с возрастающим значением см. рис. 3.32.
.
(3.89)
Таким звеном может быть, например, асинхронный двухфазный управляемый двигатель, если он имеет механическую характеристику с отрицательным наклоном. На рис. 3.33 изображены возможные варианты механических характеристик двигателя для области малых скоростей.
Рис. 3.33. Варианты механических характеристик двигателя для малых скоростей
График на рис. 3.33, а соответствует положительному наклону механических характеристик. В этом случае скорость двигателя связана с управляющим напряжением передаточной функцией, соответствующей устойчивому апериодическому звену первого порядка
,
(3.90)
где
– электромеханическая постоянная
времени двигателя; k –
коэффициент пропорциональности между
установившейся скоростью и напряжением.
Это звено обладает положительным самовыравниванием или просто самовыравниванием.
График на рис. 3.33, б соответствует независимости вращающего момента двигателя от скорости его вращения. В этом случае скорость двигателя связана с управляющим напряжением передаточной функцией, соответствующей интегрирующему звену
,
(3.91)
где kМ – коэффициент пропорциональности между вращающим моментом и напряжением; J – момент инерции.
Это звено не имеет самовыравнивания.
График на рис. 3.33, в соответствует механическим характеристикам с отрицательным наклоном, т. е. характеристикам неустойчивого типа. В этом случае скорость вращения и напряжение связаны между собой передаточной функцией вида (3.88)
,
(3.92)
что соответствует отрицательному самовыравниванию.
Существенной особенностью неустойчивых звеньев является наличие больших по сравнению с устойчивыми звеньями фазовых сдвигов. Так, для рассмотренного выше апериодического звена с отрицательным самовыравниванием имеем частотную передаточную функцию
.
(3.93)
Модуль её не отличается от модуля частотной передаточной функции апериодического звена с положительным самовыравниванием (3.31)
,
(3.94)
а фаза
(3.95)
имеет большое значение по сравнению со вторым уравнением в (3.32).
В связи с этим неустойчивые звенья относят к группе так называемых неминимально-фазовых звеньев. К неминимально-фазовым звеньям относятся также устойчивые звенья, имеющие в числителе передаточной функции (в правой части дифференциального уравнения) вещественные положительные корни или комплексные корни с положительной вещественной частью. Например, звено с передаточной функцией
(3.96)
относится к группе неминимально-фазовых звеньев.
К неустойчивым звеньям относится также ряд других звеньев, имеющих передаточные функции вида
;
(3.97)
;
(3.98)
;
(3.99)
.
(3.100)
Наличие в автоматической системе неустойчивых звеньев вызывает некоторые особенности расчета.