
- •2. Гидростатика. Силы, действующие в жидкости. Гидростатическое давление и его свойства.
- •6. Определение сил давления на плоские поверхности.
- •10. Расход жидкости. Уравнение неразрывности потока.
- •1.Определение жидкости. Ее классификация и основные физ св-ва.
- •14.Шероховатость труб и области гидравлических сопротивлений при турб дв.
- •15.Местные гидравлические сопротивления и способы их расчета.
- •23. Истечение жидкости через малые отверстия при постоянном напоре.
- •24. Истечение жидкости через насадки при постоянном напоре.
- •33.Гидравлический привод. Определение и общая характеристика.
- •Структура гидроприводов
- •25.Гидравлические машины.
- •22. Пластинчатые насосы.
- •31. Радиально-поршневые насосы и аксиально-поршневые.
- •34. Силовые гидроцилиндры. Назначение, устройство.
- •37.Распределительные устройства гидроприводов.
- •5.Основное уравнение гидростатики. Приборы изм давления. Закон Паскаля.
- •7.Определение сил давления на криволинейные поверхности.
- •8.Гидродинамика. Виды движения жидкости. Характеристики.
- •4.Уравнение поверхности равного давления. Примеры.
- •12.Уравнение Бернулли для потока реальной жидкости.
- •11.Уравнение Бернулли для элементарной струйки идеальной и реальной ж-ти.
- •17.Последлвательное и параллельное соединение трубопроводов.
- •16. Гидравлический расчет коротких трубопроводов.
- •29.Поршневые, плунжерные и диафрагменные насосы.
- •13.Режимы движения жидкости. Опыт Рейнольдса.
- •38.Дифференциальные клапана непрямого действия и редукционные клапана.
- •32.Основные рабочие характеристики насосов объемного действия.
- •18.Высота всасывания насоса.
- •26.Центробежный насос.
- •28.Рабочие характеристики центробежных насосов. Посл и пар соединение.
- •27.Работа центробежного насоса и способы регулирования.
25.Гидравлические машины.
Гидравлические машины – совокупность машин, механизмов и устройств, предназначенных для создания потока жидкой среды или для использования энергии этого потока.
К гидромашинам относятся: гидронасосы, гидродвигатели и гидропреобразователи.
Гидропреобразователь – преобразует давление одной жидкой среды в давление другой жидкой среды.
Насос – гидравлическая машина для создания потока жидкой среды. В насосе динамического типа жидкость непрерывно перемещается в камере под силовым воздействием, и камера постоянно соединена с входом и выходом (помпа). В насосе объемного типа жидкость перемещается путем периодического изменения объема одной или нескольких рабочих камер, и рабочая камера при этом попеременно замыкается с входом и выходом насоса (пластинчатый насос).
Гидродвигатель (динамический и объемный) – для преобразования гидравлической энергии жидкости в механическую работу. Динамические – гидротурбины, объемные – гидроцилиндры, гидромоторы и поворотные гидродвитатели.
Гидроцилиндр и гидродвигатель обеспечивают поступательное движение.
Гидромотор – вращательное, полноповоротное. При этом многие гидравлические машины являются обратимыми (и как гидронасос, и как гидромотор)
30. Шестеренные насосы.
Относятся к классу двухвальных коловратных машин
Форма зуба – эвольвентный, прямой, косой, шевронный.
С шестерными внутреннего зацепления используются реже
Недостатки: сложность конструкции, более низкие значениия КПД (утечки по торцам колес), высокое усилие на валы колес, более высокий уровень шума, относительно высокая пульсация (Z=6...14)
Преимущества:
1) соосность входного и выходного валов
2) чуть больший объемный КПД (на 1%)
3)меньший уровень шума
Для обеспечения равномерности подачи используют косой зуб или шевронное зацепление.
С целью увеличения подачи все насосы могут соединяться параллельно, тогда суммарная подача складывается, а для повышения напора (давления) насосы соединяются последовательно (прим. в основном для шестеренных).
Рном=10-16МПа
Q=300 л/мин
КПД до 90%
-подача
шестеренного насоса
n-частота вращения
-объемный
кпд
b-ширина колеса
m-модуль
22. Пластинчатые насосы.
М
аксимальное
давление, развиваемое отечественными
насосами=6,3 МПа. Возможность работы в
режиме самовсасывания, являются
быстроходными машинами, всасывание и
нагнетание чередуются. За счет изменения
е можно регулировать величину подачи
(если е=0, то и Q=0).
Пластинчатые насосы могут быть одно-, двух- и многократного действия. В насосах однократного действия одному обороту вала соответствует одно всасывание и одно нагнетание, в насосах двукратного действия - два всасывания и два нагнетания.
При вращении ротора пластины под действием центробежной силы, пружин или под давлением жидкости, подводимой под их торцы, выдвигаются из пазов и прижимаются к внутренней поверхности статора. Благодаря эксцентриситету объем рабочих камер вначале увеличивается - происходит всасывание, а затем уменьшается - происходит нагнетание. Жидкость из линии всасывания через окна распределительных дисков вначале поступает в рабочие камеры, а затем через другие окна вытесняется из них в напорную линию.
При изменении эксцентриситета е изменяется подача насоса. Если е = 0 (ротор и статор расположены соосно), платины не будут совершать возвратно-поступательных движений, объем рабочих камер не будет изменяться, и, следовательно, подача насоса будет равна нулю. При перемене эксцентриситета с +е на -е изменяется направление потока рабочей жидкости. Таким образом, пластинчатые насосы однократного действия в принципе регулируемые и реверсируемые.