Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ивана некрасова реферат.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
65.33 Кб
Скачать

Министерство общего и профессионального образования

Свердловской области

ГБОУ СПО СО «Качканарский горно – промышленный колледж»

Направление: “Электрические устройства и аппараты”

Принцип действия и устройства коммутирующих аппаратов

Реферат

Исполнитель: Некрасов Иван Сергеевич,

учащийся гр. 23ГЭМ

Профессия: “Эксплуатация горного

электрического электромеханического

оборудования.

Руководитель: Подобина Анжелика

Валерьевна.

Качканар, 2014

Содержание

Введение

1.Виды и классификация коммутирующих устройств 4

1.1 Виды коммутирующих устройств. 4

1.2 Классификация коммутирующих устройств 6

2.Применение 8

3.Устройство и принцип действия 9

3.1 Принцип действия механических переключателей 9

3.2 Принцип действия оптоэлектронных коммутационных устройств 9

4.Достоинства и недостатки 11

4.1 Параметры и требования коммутационных устройств 11

4.2 Достоинства и недостатки оптоэлектронных коммутаторов 13

Заключение

Список литературы

Приложения

Введение

Устройства коммутации (коммутационные устройства) и соединители широко используются в электронной аппаратуре (ЭА), в том числе при применении интегральных схем (ИС). Устройства коммутации позволяют быстро (практически мгновенно) коммутировать (включать, выключать) электрические цепи в работающей аппаратуре в результате изменения сопротивления исполнительных элементов под действием управляющих сигналов (или управляющих воздействий). Это дает возможность в процессе функционирования ЭА переключать диапазоны, изменять режимы работы, вводить информацию, перераспределять сигналы по цепям и т. п.

Дальнейшая автоматизация производства, повышение технического уровня, ускоренное развитие средств автоматизации – вот те основные задачи, которые стоят в настоящее время перед наукой и техникой.

Моя цель в этом реферате изучить коммутационные устройства, их принцип действия, применение и что собой представляют.

Принцип действия и устройства коммутирующих аппаратов

Коммутационный аппарат — аппарат, предназначенный для включения или отключения тока в одной или более электрических цепях.

В общем случае можно разделить все коммутационные аппараты на два типа:

Контактный коммутационный аппарат, осуществляющий коммутационную операцию путем перемещения его контакт-деталей относительно друг друга

Бесконтактный коммутационный аппарат, осуществляющий коммутационную операцию без перемещения и разрушения его деталей.

1.Виды и классификация коммутационных устройств

1.1Виды коммутирующих устройств

Механическое коммутационное устройство — коммутационное устройство, предназначенное для замыкания и размыкания одной или нескольких цепей с помощью размыкаемых контактов. Любое механическое коммутационное устройство можно характеризовать в зависимости от среды, в которой размыкаются и замыкаются его контакты, например воздушной, SFG, масляной.

Полупроводниковое коммутационное устройство — коммутационное устройство, созданное для включения и/или отключения тока в электрической цепи в результате воздействия на регулируемую проводимость полупроводника. Полупроводниковый коммутационный прибор рассчитан также на отключение тока.

Плавкий предохранитель — коммутационный аппарат, размыкающий цепь (посредством плавления одного или нескольких своих специально спроектированных и калиброванных элементов), в которую он включен, и отключает ток, когда он превышает заданное значение в течение достаточного времени

Автоматический выключатель — контактный коммутационный аппарат, способный включать, проводить и отключать токи при нормальных условиях в цепи, а также включать, проводить в течение установленного нормированного времени и отключать токи при указанных ненормальных условиях в цепи, таких как короткое замыкание.

Контактор (контактный) — контактный коммутационный аппарат с единственным положением покоя, с управлением не вручную, способный включать, проводить и отключать токи при нормальных условиях цепи, включая перегрузку. Термин «с управлением не вручную» означает, что для управления прибором и его работы требуется одно или несколько внешних усилий. Контактор обычно предназначен для частой работы.

Электромагнитный контактор — контактор, в котором сила для замыкания контактов обеспечивается электромагнитом.

Запираемый контактор — контактор, в котором запирающее приспособление не позволяет подвижным элементам вернуться в положение покоя, когда прекращается воздействие на механизм. Запор защелки и его расцепитель могут быть механическим, электромагнитным, пневматическим и т.д. Благодаря запору, запираемый контактор фактически приобретает второе положение покоя и в соответствии с определением контактора, в строгом смысле слова, он не является контактором. Однако поскольку по области применения и конструкции запираемый контактор ближе к контакторам вообще, чем к любым другим коммутационным аппаратам, считают необходимым его соответствие, когда уместно, требованиям к контакторам.

Полупроводниковый контактор — аппарат, который выполняет функции контактора за счет использования полупроводникового коммутационного аппарата. Полупроводниковый контактор может также включать в себя контактные коммутационные аппараты.

Контрольное коммутационное устройство — автоматически управляемое коммутационное устройство, начинающее работать при определенных условиях, выраженных в количественном значении (давление, температура, скорость, уровень жидкости и т.д.).

Нажимная кнопка — аппарат управления, имеющий орган управления, предназначенный для оперирования усилием, создаваемым частью человеческого тела, обычно ладонью или пальцем руки, и имеющий устройство возврата накопленной энергии (пружину).

Аппарат защиты от короткого замыкания (АЗКЗ) — аппарат, предназначенный для защиты цепи или участка цепи от токов короткого замыкания посредством их отключения.

Разрядник для защиты от перенапряжений — устройство, предназначенное для защиты электрооборудования от высоких переходных перенапряжений и ограничения длительности, а часто и амплитуды последующего тока.