Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Распространение звуковых волн в пространстве..docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
247.08 Кб
Скачать

3.1.2. Связь между звуковым давлением и колебательной скоростью

Рассмотрим плоский участок волнового фронта площадью S. Распространение продольной волны, т.е. смещение частиц вещества вдоль луча, происходит благодаря тому, что давление перед этой поверхностью больше, чем давление за ней на величину dpзв. Таким образом, вдоль луча имеется отрицательный дифференциал давления dpзв (т.к. положительным дифференциалом считается увеличение параметра вдоль оси). Эта разность давлений вызывает приложение к поверхности S силы, направленной вдоль луча F=-dpзвS. Масса вещества, к которой приложена эта сила будет  , где r -плотность воздуха (~1,2 кг/м3), dr - дифференциал расстояния вдоль луча, на котором определяется дифференциал давления. Записанный для этого случая второй закон Ньютона F=ma называют уравнением движения среды:

-dpзвS=r *dr*S*dv/dt,

.

3.1.3. Плоская волна

Плоской волной называется волна с плоским фронтом. При этом лучи являются параллельными.

Образуется поблизости от колеблющейся плоскости или если рассматривается небольшой участок волнового фронта точечного излучателя. Причем абсолютная площадь этого участка может быть тем больше, чем дальше мы находимся от излучателя. То, что излучатель считается точечным, также говорит о большом расстоянии до него. Кроме того, точечность излучателя говорит о том, что рассматривается только прямая волна.

Лучи, охватывающие участок плоскости рассматриваемого волнового фронта, образуют "трубу". Амплитуда звукового давления в плоской волне не уменьшается при удалении от источника, т.к. не происходит растекания энергии за пределы стенок этой трубы. Если иметь ввиду практически реальные случаи, то это соответствует остронаправленному излучению, например, излучению электростатических панелей большой площади, рупорных излучателей.

Единственное, чем отличаются сигналы в различных точках луча плоской волны, это временной сдвиг. Если звуковое давление на некотором участке плоского волнового фронта является синусоидальным pзв=pзвm*exp(jWt), то на расстоянии r по лучу pзв=pзвm*exp(jW(t-r/cзв))= pзвm*exp(j(Wt-r*W/cзв))= pзвm*exp(j(Wt-k*r)), где r/cзв - время пробега звуковой волной расстояния r, k= W/cзв=2p/l - волновое число. k определяет фазовый сдвиг между сигналами во фронтах плоской волны, находящихся на расстоянии r.

Реальные звуковые волны являются более сложными, чем синусоидальные, однако выкладки, проводимые для синусоидальных волн, справедливы и для несинусоидальных сигналов, если не рассматривать частоту как константу, т.е. рассматривать сложный сигнал в частотной области. Это возможно, и даже более адекватно восприятию звука человеком, до тех пор, пока процессы распространения волн остаются линейными (в сфере интересов электроакустики это практически всегда так).

3.1.4. Удельное акустическое сопротивление среды

Определим отношение звукового давления и колебательной скорости для синусоидальной волны. Из уравнения движения среды:

,

.

Из этой записи следует, что:

1) колебательная скорость и звуковое давление связаны линейной зависимостью, точнее прямой пропорциональностью;

2) коэффициент связи   вещественный, следовательно, v и pзв имеют одинаковые фазы.

Произведение   называется удельным акустическим сопротивлением среды za. Это аналог электрического сопротивления, если звуковое давление сопоставить с напряжением, а колебательную скорость с током. При нормальном атмосферном давлении и температуре 200С za=413 кг/(м2с).

Если удельное сопротивление среды умножить на некоторую площадь поверхности, то получим сопротивление, оказываемое средой этой поверхности (сопротивление излучения):  . Размерность  . Таким образом, колеблющееся тело испытывает со стороны среды сопротивление, подобное трению: оно также требует от источника колебаний совершения работы (см. пункт "Энергетические характеристики звукового поля"), но связано не с переводом энергии в тепло, а с оттоком мощности в пространство.

Сами по себе удельное сопротивление среды и сопротивление излучения от частоты не зависят, но, для того, чтобы развить то же звуковое давление на низких частотах, нужна большая амплитуда смещения или большая площадь, т.к.  .